RESUMEN
Sequestration of cadmium (Cd) in rice phytolith can effectively restrict its migration to the grains, but how hydroxamate siderophore (HDS) affects phytolith formation within rice plants especially the fate of Cd and silicon (Si) remains poorly understood. Here, we found that the addition of HDS increased the content of dissolved Si and Cd in soil pore water as well as its absorption by the rice roots during the reproductive growth stage. HDS effectively trapped orthosilicic acid and Cd ions at the third stem nodes of rice plants via hydrogen bonds and chelation interactions, which then rapidly deposited on the xylem cell wall through hydrophobic interactions. Ultimately, Cd was immobilized as phytolith-like particulates in the form of CdSiO3. Field experiments verified that Cd accumulation was significantly reduced by 46.4% in rice grains but increased by 41.2% in rice stems after HDS addition. Overall, this study advances our understanding of microbial metabolites enhancing the instinctive physiological barriers within rice plants.
Asunto(s)
Cadmio , Ácidos Hidroxámicos , Oryza , Tallos de la Planta , Sideróforos , Silicio , Contaminantes del Suelo , Oryza/metabolismo , Oryza/química , Oryza/crecimiento & desarrollo , Cadmio/metabolismo , Cadmio/química , Silicio/metabolismo , Silicio/química , Sideróforos/metabolismo , Sideróforos/química , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/química , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/química , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Raíces de Plantas/crecimiento & desarrolloRESUMEN
Livestock farm is a major source of antibiotics and antibiotic resistance genes (ARGs) pollution. ARGs can directly enter the environment through runoff and air deposition. The impact extent and the driving factors require further investigation to inform effective policies and actions to mitigate their spread. This study investigated a smallholder pig farm and its surrounding areas to understand the spread of ARGs. Topsoil samples were collected from 56 different sites within one kilometer of the farm, and a comprehensive analysis was conducted to reveal effects of soil properties, antibiotic residues, microbiome, mobilome on the variation of typical ARGs. The results confirmed that the ARGs reduced exponentially with increasing distance from the farm, with a goodness of fit (R2) of 0.7 for total ARGs. For tetracyclines (TC) and sulfonamides (SA) resistance genes, the fitting R2 exceeded 0.9. Model estimates allowed for quantitative comparisons of in-farm increments, out-farm background levels, and spread abilities of ARGs with distinct resistance mechanisms. SA-specific resistance genes (SRGs, 0.097 copies/16S rRNA gene) and TC-specific resistance genes (TRGs, 0.036 copies/16S rRNA gene) showed higher within-farm increases compared to multidrug resistance genes (MDRGs, 0.020 copies/16S rRNA gene). MDRGs, however, had a higher background level and a greater impact distance (0.18 km, 4.4 times the farm radius). Additionally spread abilities of TRGs varied by resistance mechanism, with ribosome protection proteins showing greater spread than TC inactivating enzymes and TC efflux pumps, likely due to different fitness costs. Correlation analysis and structural equation modeling indicated that changes in bacterial community composition and mobilome are primary factors influencing ARGs variation during their spread. Abiotic factors like soil nutrients and antibiotics also selectively enriched ARGs within the farm. These findings provide insights into the ARGs dissemination and could inform strategies to prevent their spread from smallholder livestock farms.
RESUMEN
Legacy-contaminated sites act as significant sources of mercury (Hg) to their surrounding surface and underground environments. Intensified extreme precipitation is posing great threats to the environment and human health by changing the fate of pollutants, yet little is known about its effect on the vertical migration and methylation of Hg in contaminated sites. Here, we applied a range of simulated extreme precipitation patterns (frequency and intensity) to column leaching assays with soils collected near a contaminated site. We observed that precipitation with high frequency but low intensity resulted in more vertical migration of Hg through the soil profile than that with low frequency but high intensity. The majority (> 90%) of leached Hg was prone to migrate vertically within the top 10 cm of the soil profile. Furthermore, rainfall stimulated microbial Hg methylation, as demonstrated by enhanced production of methylmercury (MeHg) in both simulated and field-contaminated soils. We identified specific microbial taxa including Geobacteraceae, Desulfuromonadaceae, Syntrophaceae, Oscillospiraceae, and Methanomicrobiaceae as key predictors of MeHg production, which differed from those typically observed in overlying water of croplands. Particularly, the relative abundance of these dominant Hg methylators significantly increased during rainfall-induced leaching compared to that of the control, suggesting the crucial yet previously overlooked impacts of increased precipitation events on the process of microbial Hg methylation in industry-contaminated sites. Given the rising incidences of extreme precipitation events worldwide due to climate change, this study highlights the significance of assessing Hg mobility and microbial transformation in legacy contaminated sites.
RESUMEN
Isodecyl diphenyl phosphate (IDDP) is among the emerging aromatic organophosphate esters (aryl-OPEs) that pose risks to both human beings and other organisms. This study aims to investigate the translocation and biotransformation behavior of IDDP in rice and the rhizosphere microbiome through hydroponic exposure (the duration of hydroponic exposure was 10 days). The rhizosphere microbiome 9-FY was found to efficiently eliminate IDDP, thereby reducing its uptake in rice tissues and mitigating the negative impact of IDDP on rice growth. Furthermore, this study proposed the first-ever transformation pathways of IDDP, identifying hydrolysis, hydroxylation, methylation, methoxylation, carboxylation, and glucuronidation products. Notably, the methylation and glycosylation pathways were exclusively observed in rice, indicating that the transformation of IDDP in rice may be more complex than in microbiome 9-FY. Additionally, the presence of the product COOH-IDDP in rice suggested that there might be an exchange of degradation products between rice and rhizobacteria, implying their potential interaction. This finding highlights the significance of rhizobacteria's role which cannot be overlooked in the accumulation and transformation of organic pollutants in grain crops. The study revealed active members in 9-FY during IDDP degradation, and metagenomic analysis indicated that most of the active populations contained IDDP-degrading genes. Moreover, transcriptome sequencing showed that cytochrome P450, acid phosphatase, glucosyltransferase, and methyltransferases genes in rice were up-regulated, which was further confirmed by RT-qPCR. This provides insight into the intermediate products identified in rice, such as hydrolysis, hydroxylated, glycosylated, and methylated products. These results significantly contribute to our understanding of the translocation and transformation of organophosphate esters (OPEs) in plants and the rhizosphere microbiome, and reveal the fate of OPEs in rice and microbiome system to ensure the paddy yield and rice safety.
Asunto(s)
Microbiota , Oryza , Rizosfera , Oryza/metabolismo , Oryza/microbiología , Redes y Vías Metabólicas , Contaminantes del Suelo/metabolismo , Compuestos Organofosforados/metabolismo , Microbiología del Suelo , Organofosfatos/metabolismoRESUMEN
Facing complex and variable emerging antibiotic pollutants, the traditional development of functional materials is a "trial-and-error" process based on physicochemical principles, where laborious steps and long timescales make it difficult to accelerate technical breakthroughs. Notably, natural biomolecular coronas derived from highly tolerant organisms under significant contamination scenarios can be used in conjunction with nanotechnology to tackling emerging contaminants of concern. Here, super worms (Tubifex tubifex) with high pollutant tolerance were integrated with nano-zero valent iron (nZVI) to effectively reduce the content of 17 antibiotics in wastewater within 7 d. Inspired by the synergistic remediation, nZVI-augmented worms were constructed as biological nanocomposites. Neither nZVI (0.3 to 3 g/L) nor worms (104 to 105 per liter) alone efficiently degraded florfenicol (FF, as a representative antibiotic), while their composite removed 87% of FF (3 µmol/L). Under antibiotic exposure, biomolecules secreted by worms formed a corona on and modified the nZVI particle surface, enabling the nano-bio interface greater functionality, including responsiveness, enrichment, and reduction. Mechanistically, FF exposure activated glucose-alanine cycle pathways that synthesize organic acids and amines as major metabolites, which were assembled into vesicles and secreted, thereby interacting with nZVI in a biologically response design strategy. Lactic acid and urea formed hydrogen bonds with FF, enriched analyte presence at the heterogeneous interface. Succinic and lactic acids corroded the nZVI passivation layer and promoted electron transfer through surface conjugation. This unique strategy highlights biomolecular coronas as a complex resource to augment nano-enabled technologies and will provide shortcuts for rational manipulation of nanomaterial surfaces with coordinated multifunctionalities.
Asunto(s)
Antibacterianos , Hierro , Antibacterianos/química , Antibacterianos/farmacología , Animales , Hierro/química , Hierro/metabolismo , Corona de Proteínas/química , Corona de Proteínas/metabolismo , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/metabolismo , Oligoquetos/metabolismo , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodos , Nanocompuestos/químicaRESUMEN
Investigating the fate of persistent organic pollutants in water distribution systems (WDSs) is of great significance for preventing human health risks. The role of iron corrosion scales in the migration and transformation of organics in such systems remains unclear. Herein, we determined that hydroxyl (â¢OH), chlorine, and chlorine oxide radicals are generated by Fenton-like reactions due to the coexistence of oxygen vacancy-related Fe(II) on goethite (a major constituent of iron corrosion scales) and hypochlorous acid (HClO, the main reactive chlorine species of residual chlorine at pH â¼ 7.0). â¢OH contributed mostly to the decomposition of atrazine (ATZ, model compound) more than other radicals, producing a series of relatively low-toxicity small molecular intermediates. A simplified kinetic model consisting of mass transfer of ATZ and HClO, â¢OH generation, and ATZ oxidation by â¢OH on the goethite surface was developed to simulate iron corrosion scale-triggered residual chlorine oxidation of organic compounds in a WDS. The model was validated by comparing the fitting results to the experimental data. Moreover, the model was comprehensively applicable to cases in which various inorganic ions (Ca2+, Na+, HCO3-, and SO42-) and natural organic matter were present. With further optimization, the model may be employed to predict the migration and accumulation of persistent organic pollutants under real environmental conditions in the WDSs.
Asunto(s)
Contaminantes Químicos del Agua , Cinética , Radicales Libres/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Hierro/química , Compuestos de Hierro/química , Minerales/químicaRESUMEN
Initial volatile concentration (Cs0) is a crucial parameter for the migration and diffusion of volatile organic pollutants (VOCs) from the soil to the atmosphere. The acquisition of Cs0 is, however, time-consuming and labor-intensive. This study developed a prediction model for Cs0 based on theoretical analysis and experimental simulations. The model was established by correlating the molecular kinetic and sorption potential energy. The pore structure and pore size distribution of the soil were analyzed based on the fractal theory of porous media, followed by calculating the sorption potential energy corresponding to each pore size. It was observed that the pore size distribution of soil influenced BTEX (benzene, toluene, ethylbenzene, and xylene) volatilization by impacting sorption potential energy. The soil parameters, such as organic matter and soil moisture content, and the initial concentration and physical properties of BTEX were coupled to the prediction model to ensure its practicability. Red soil was finally used to verify the accuracy and applicability of the model. The experimental and predicted values' maximum relative and root-mean-square errors were determined to be 24.2% and 11.7%, respectively. The model provides a simple, rapid, and accurate assessment of soil vapor emission content due to BTEX contamination. This study offers an economical and practical method for quantifying the amount of volatile BTEX in contaminated sites, providing a reference for its monitoring, control, and subsequent remediation.
Asunto(s)
Derivados del Benceno , Benceno , Contaminantes del Suelo , Suelo , Tolueno , Compuestos Orgánicos Volátiles , Xilenos , Contaminantes del Suelo/análisis , Contaminantes del Suelo/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Tolueno/química , Tolueno/análisis , Volatilización , Benceno/química , Benceno/análisis , Derivados del Benceno/química , Derivados del Benceno/análisis , Suelo/química , Xilenos/química , Xilenos/análisis , Adsorción , Modelos Químicos , Monitoreo del Ambiente/métodosRESUMEN
Halogenated flame retardants in farmlands were observed to inhibit the growth of exposed crops. This study aimed to elucidate the mechanism of inhibition on rice by employing four representative polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs). The exposure to these contaminants at 200 nM led to a decrease of 0.63-0.95 fold in rice below-ground biomass and 0.49-0.66 fold in yield, and a corresponding 4%-10% increase in soluble sugars in leaves. PBDEs and PCBs were found to significantly disrupt the synthesis, decomposition, and transport of sugars in leaves, the three pivotal determinants of crop growth. Notably, these compounds promoted a 1.41- to 7.60-fold upregulation of the triose phosphate translocator, significantly enhancing soluble sugar synthesis. Conversely, a 0.45-0.97 fold downregulation was observed for sucrose transporters, thus impeding the leaf-to-shoot efflux of soluble sugars. Furthermore, PBDEs and PCBs were favorably bound to fructose-1,6-bisphosphate aldolase (FBA), inducing its substrate-specific dysfunction in fructose-1,6-diphosphate decomposition (3%-14%). Overall, PBDE and PCB exposure promoted a notable intracellular accumulation of soluble sugars in rice leaves, a typical symptom of plant diabetes, since the intensified synthesis of soluble sugars in leaves and the repressed decomposition and transportation of soluble sugars to other storage organs, thus impeding crop growth. This study provided an insightful understanding of the toxic effects and molecular mechanisms of halogenated flame retardants, highlighting their role in abnormal sugar accumulation and growth inhibition in crops and offering vital information for the risk assessment and administration of these compounds to guarantee the safety of agricultural products.
Asunto(s)
Éteres Difenilos Halogenados , Oryza , Bifenilos Policlorados , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Éteres Difenilos Halogenados/metabolismo , Bifenilos Policlorados/metabolismo , Azúcares/metabolismo , Hojas de la Planta/metabolismo , Contaminantes del Suelo/metabolismo , Retardadores de Llama/metabolismo , Transporte BiológicoRESUMEN
Sulfonamide antibiotics and polycyclic aromatic hydrocarbons (PAHs) often coexist in soil, leading to compound pollution through various pathways. This study focuses on sulfamethazine (SMZ) and PAHs (fluoranthene) as the subject for compound pollution research. Using a soil-groundwater simulation system, we investigated the migration characteristics of SMZ under coexistence with fluoranthene (Fla) and observed variations in the abundance of antibiotic resistance genes (ARGs). Through molecular docking simulations and isothermal adsorption experiments, we discovered that Fla bound with SMZ via π-π interactions, resulting in a 20.9% increase in the SMZ soil-water partition coefficient. Under compound conditions, the concentration of SMZ in surface soil could reach 1.4 times that of SMZ added alone, with an 13.4% extension in SMZ half-life. The deceleration of SMZ's vertical migration rate placed additional stress on surface soil microbiota, leading to a proliferation of ARGs by 66.3%-125.8%. Moreover, under compound pollution, certain potential hosts like Comamonadaceae and Gemmatimonas exhibited a significant positive correlation with resistance genes such as sul 1 and sul 2. These findings shed light on the impact of PAHs on sulfonamide antibiotic migration and the abundance of ARGs. They also provide theoretical insights for the development of technologies aimed at mitigating compound pollution in soil.
Asunto(s)
Fluorenos , Contaminantes del Suelo , Suelo , Sulfametazina , Suelo/química , Microbiología del Suelo , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Simulación del Acoplamiento Molecular , Hidrocarburos Policíclicos AromáticosRESUMEN
Severe pollution threatens the ecosystem and human health in the Yangtze River Delta (YRD) in China because of the rapid development of industry in this area. This study examines the types, distribution, concentration, and origin of fourteen typical organophosphate flame retardants (OPFRs) in agricultural soils within the YRD region to offer insights for pollutant control and policy-making. The total concentration of OPFRs (ΣOPFRs) varied between 79.19 and 699.58 µg/kg dry weight (dw), averaging at 209.61 µg/kg dw. Among the OPFRs detected, tributoxyethyl phosphate (TBEP) was identified as the main congener, followed by tri-n-butyl phosphate (TnBP), tris(2-chloroisopropyl) phosphate (TCPP), and trimethyl phosphate (TMP). Source analysis, conducted through correlation coefficients and PCA, indicated that OPFRs in agricultural soils within the YRD region mainly originate from emissions related to plastic products and transportation. The health risk exposure to ΣOPFRs in agricultural soil was considered negligible for farmers, with values below 1.24 × 10-2 and 1.76 × 10-9 for noncarcinogenic and carcinogenic risks, respectively. However, the ecological risk of ΣOPFRs in all the samples ranged from 0.08-1.08, indicating a medium to high risk level. The results offer a comprehensive understanding of OPFR pollution in agricultural soils in the YRD region and can be useful for pollution control that mitigates ecological and health risks in this region.
Asunto(s)
Agricultura , Monitoreo del Ambiente , Retardadores de Llama , Organofosfatos , Contaminantes del Suelo , Suelo , Retardadores de Llama/análisis , China , Medición de Riesgo , Contaminantes del Suelo/análisis , Organofosfatos/análisis , Suelo/química , Ríos/química , HumanosRESUMEN
The widespread introduction of organic compounds into environments poses significant risks to ecosystems. Assessing the adverse effects of organic contaminants on crops is crucial for ensuring food safety. However, laboratory research is often time-consuming and costly, and machine learning (ML) methods can offer a viable solution to address these challenges. This study aimed at developing a ML model that incorporates chemical descriptors to predict the phytotoxicity of organic contaminants on rice. A dataset was compiled by gathering published experimental data on the phytotoxicity of 60 organic compounds, with a focus on morphological inhibition, photosynthesis perturbation, and oxidative stress. Four ML models (RF, SVM, GBM, ANN) were developed using chemical molecular descriptors (CMD) and the Molecular ACCess System (MACCS) keys. RF-MACCS model demonstrated the highest fitness, achieving an R2 value of 0.79 and an RMSE of 0.14. Feature importance analysis highlighted nAtom, HBA, logKow, and TPSA as the most influential CMDs in our model. Additionally, substructures containing oxygen atoms, carbonyl group and carbon chains with nitrogen and oxygen atoms were identified as significant factors associated with phytotoxicity. This data-driven study could aid in predicting the phytotoxicity of organic contaminants on crops and evaluating the potential risks of emerging contaminants in agroecosystems.
Asunto(s)
Aprendizaje Automático , Oryza , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Compuestos Orgánicos/toxicidad , Fotosíntesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes del Suelo/toxicidadRESUMEN
The migration and dissemination of antibiotics and their corresponding antibiotic resistance genes (ARGs) from pharmaceutical plants through wastewater treatment to the environment introduce exogenous ARGs, increasing the risk of antibiotic resistance. Cephalosporin antibiotics (Ceps) are among the most widely used antibiotics with the largest market scale today, and the issue of resistance is becoming increasingly severe. In this study, a cephalosporin pharmaceutical plant was selected and metagenomic analysis was employed to investigate the dissemination patterns of cephalosporin antibiotics (Ceps) and their ARGs (CepARGs) from the pharmaceutical plant through the wastewater treatment plant to tidal flats sediments. The findings revealed a significant reduction in the total concentration of Ceps by 90.32 % from the pharmaceutical plant's Pioneer Bio Reactor (PBR) to the effluent of the wastewater treatment plant, and a notable surge of 172.13 % in the relative abundance of CepARGs. It was observed that CepARGs originating from the PBR could migrate along the dissemination chain, contributing to 60 % of the CepARGs composition in tidal flats sediments. Microorganisms play a crucial role in the migration of CepARGs, with efflux-mediated CepARGs, as an intrinsic resistance mechanism, exhibiting a higher prospensity for migration due to their presence in multiple hosts. While Class I risk CepARGs are present at the pharmaceutical and wastewater plant stages, Class I ina-CepARGs are completely removed during wastewater treatment and do not migrate to the environment. This study reveals the dynamic migration characteristics and potential risk changes regarding Ceps and CepARGs in real dissemination chains, providing new theoretical evidence for the mitigation, control, and risk prevention of CepARGs.
Asunto(s)
Antibacterianos , Cefalosporinas , Farmacorresistencia Microbiana , Aguas Residuales , Cefalosporinas/farmacología , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Eliminación de Residuos LíquidosRESUMEN
Antimicrobial resistance (AMR) stands as an escalating public health crisis fueled by antimicrobial residues in the environment, particularly in soil, which acts as a reservoir for antimicrobial resistance genes (ARGs). Merely quantifying the total extractable concentration of antimicrobials, instead of bioavailable fractions, may substantially underestimate their minimal selection concentration for propagating ARGs. To shed light on the role of bioavailability in ARG abundance within soil, a systematic bioavailability assessment method was established for accurately quantifying the partitioning of multi-class antimicrobials in representative Chinese soils. Microcosm studies unveiled that antimicrobials persisting in the bioavailable fraction could potentially prolong their selection pressure duration to trigger AMR. Notably, the co-occurrence of pesticide or steroid hormone influenced the development trends of ARG subtypes, with fluoroquinolone resistance genes (RGs) being particularly susceptible. Partial least squares path model (PLS-PM) analysis uncovered potentially distinct induction mechanisms of antimicrobials: observable results suggested that extractable residual concentration may exert a direct selection pressure on the development of ARGs, while bioavailable concentration could potentially play a stepwise role in affecting the abundance of mobile genetic elements and initiating ARG dissemination. Such unprecedented scrutinization of the interplay between bioavailable antimicrobials in soils and ARG abundance provides valuable insights into strategizing regulatory policy or guidelines for soil remediation.
Asunto(s)
Antiinfecciosos , Microbiología del Suelo , Suelo , Suelo/química , Contaminantes del Suelo/análisis , Disponibilidad Biológica , Farmacorresistencia Bacteriana/genética , Antibacterianos , ChinaRESUMEN
DNA methylation is well-accepted as a bridge to unravel the complex interplay between genome and environmental exposures, and its alteration regulated the cellular metabolic responses towards pollutants. However, the mechanism underlying site-specific aberrant DNA methylation and metabolic disorders under pollutant stresses remained elusive. Herein, the multilevel omics interferences of sulfonamides (i.e., sulfadiazine and sulfamerazine), a group of antibiotics pervasive in farmland soils, towards rice in 14 days of 1 mg/L hydroponic exposure were systematically evaluated. Metabolome and transcriptome analyses showed that 57.1-71.4 % of mono- and disaccharides were accumulated, and the differentially expressed genes were involved in the promotion of sugar hydrolysis, as well as the detoxification of sulfonamides. Most differentially methylated regions (DMRs) were hypomethylated ones (accounting for 87-95 %), and 92 % of which were located in the CHH context (H = A, C, or T base). KEGG enrichment analysis revealed that CHH-DMRs in the promoter regions were enriched in sugar metabolism. To reveal the significant hypomethylation of CHH, multi-spectroscopic and thermodynamic approaches, combined with molecular simulation were conducted to investigate the molecular interaction between sulfonamides and DNA in different sequence contexts, and the result demonstrated that sulfonamides would insert into the minor grooves of DNA, and exhibited a stronger affinity with the CHH contexts of DNA compared to CG or CHG contexts. Computational modeling of DNA 3D structures further confirmed that the binding led to a pitch increase of 0.1 Å and a 3.8° decrease in the twist angle of DNA in the CHH context. This specific interaction and the downregulation of methyltransferase CMT2 (log2FC = -4.04) inhibited the DNA methylation. These results indicated that DNA methylation-based assessment was useful for metabolic toxicity prediction and health risk assessment.
Asunto(s)
Metilación de ADN , Oryza , Sulfonamidas , Metilación de ADN/efectos de los fármacos , Oryza/genética , Oryza/metabolismo , Sulfonamidas/toxicidad , Metabolismo de los Hidratos de Carbono/efectos de los fármacos , Contaminantes del Suelo/toxicidadRESUMEN
Polybrominated diphenyl ethers (PBDEs) in soils posed potential risks to crop growth and food safety due to their prevalence and persistence. PBDEs were capable of being absorbed and accumulated into crops, impacting their growth, whereas the interference on metabolic components and nutritional composition deserves further elucidation. This study integrated a combined non-targeted and targeted metabolomics method to explore the influences of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) and decabromodiphenyl ether (BDE-209) on the metabolic responses of rice (Oryza sativa). Metabolic pathways, which were associated with sugars, organic acids, and amino acids, were significantly disturbed under PBDE stresses. Particularly, 75% of the marked altered pathways belonged to amino acid metabolism, with alanine/aspartate/glutamate metabolism being commonly enhanced. The degradation of aspartic acid promoted the formation of downstream amino acids, among which the levels of lysine, methionine, isoleucine, and asparagine were increased by 1.31-3.15 folds compared to the control. Thus, the antioxidant capacity in rice plants was enhanced, particularly through the significant promotion of ascorbic acid-glutathione (AsA-GSH) cycle in rice leaves. The amino acids were promoted to resist reactive oxygen species (ROS) efficiently, thus were deficient for nutrient storage. When exposed to 4 µmol/kg PBDEs, the contents of amino acids and proteins in grains decreased by 9.1-32.1% and 8.6-34.8%, respectively. In particular, glutelin level was decreased by 5.6-41.2%, resulting in a decline in nutritional quality. This study demonstrated that PBDEs deteriorated the protein nutrition in rice grains by affecting amino acid metabolism, providing a new perspective for evaluating the ecological risks of PBDEs and securing agricultural products.
Asunto(s)
Aminoácidos , Éteres Difenilos Halogenados , Oryza , Contaminantes del Suelo , Oryza/metabolismo , Éteres Difenilos Halogenados/metabolismo , Aminoácidos/metabolismo , Contaminantes del Suelo/metabolismo , Proteínas de Plantas/metabolismo , Grano Comestible/metabolismo , Grano Comestible/químicaRESUMEN
In-situ chemical oxidation is an important approach to remediate soils contaminated with persistent organic pollutants, e.g., polycyclic aromatic hydrocarbons (PAHs). However, massive oxidants are added into soils without an explicit model for predicting the redox potential (Eh) during soil remediation, and overdosed oxidants would pose secondary damage by disturbing soil organic matter and acidity. Here, a soil redox potential (Eh) model was first established to quantify the relationship among oxidation parameters, crucial soil properties, and pollutant elimination. The impacts of oxidant types and doses, soil pH, and soil organic carbon contents on soil Eh were systematically clarified in four commonly used oxidation systems (i.e., KMnO4, H2O2, fenton, and persulfate). The relative error of preliminary Eh model was increased from 48-62% to 4-16% after being modified with the soil texture and dissolved organic carbon, and this high accuracy was verified by 12 actual PAHs contaminated soils. Combining the discovered critical oxidation potential (COP) of PAHs, the moderate oxidation process could be regulated by the guidance of the soil Eh model in different soil conditions. Moreover, the product analysis revealed that the hydroxylation of PAHs occurred most frequently when the soil Eh reached their COP, providing a foundation for further microorganism remediation. These results provide a feasible strategy for selecting oxidants and controlling their doses toward moderate oxidation of contaminated soils, which will reduce the consumption of soil organic matter and protect the main structure and function of soil for future utilization. ENVIRONMENTAL IMPLICATIONS: This study provides a novel insight into the moderate chemical oxidation by the Eh model and largely reduces the secondary risks of excessive oxidation and oxidant residual in ISCO. The moderate oxidation of PAHs could be a first step to decrease their toxicity and increase their bioaccessibility, favoring the microbial degradation of PAHs. Controlling the soil Eh with the established model here could be a promising approach to couple moderate oxidation of organic contaminants with microbial degradation. Such an effective and green soil remediation will largely preserve the soil's functional structure and favor the subsequent utilization of remediated soil.
RESUMEN
Soil vapor extraction (SVE) was a cost-effective technology for remediating volatile and semi-volatile organic contaminated soils. Many factors, including SVE parameters, soil properties, and contaminant characteristics, significantly influenced the remediation efficiency of SVE. The optimal conditions for organic pollutants removal efficiency were site-specific and varied among studies. Therefore, a generalized model was needed to predict the remediation efficiency of SVE in organic contaminated soils. This study employed machine learning to predict the removal efficiency of organic pollutants by SVE. The model's development was based on a trainset, and its predictive capabilities were evaluated using a testset. An XGBoost (XGB) model was derived from literature data (R2 = 0.9728). Time, pollutant type, and temperature were identified as the three most important features affecting SVE remediation efficiency. The accuracy (R2 = 0.9799) and universality of the model were enhanced through an optimization scheme. The developed XGB model demonstrated the ability to predict the removal efficiency of organic pollutants by considering all collected influential factors. The mechanism of multi-factor interaction on remediation efficiency was clarified. Overall, this study would contribute to evaluating the remediation potential of SVE for specific organic contaminated soils, aiding in maximizing the removal efficiency of organic pollutants under optimal conditions.
RESUMEN
Biochar and soil carbon sequestration hold promise in mitigating global warming by storing carbon in the soil. However, the interaction between biochar properties, soil carbon-nitrogen cycling, and nitrogen fertilizer application's impact on soil carbon-nitrogen balance remained unclear. Herein, we conducted batch experiments to study the effects and mechanisms of rice straw biochar application (produced at 300, 500, and 700 °C) on net greenhouse gas emissions (CO2, N2O, CH4) in upland soils under different forms of nitrogen fertilizers. The findings revealed that (NH4)2SO4 and urea significantly elevated soil carbon dioxide equivalent emissions, ranging from 28 to 61.7 kg CO2e/ha and 8.2 to 37.7 kg CO2e/ha, respectively. Conversely, KNO3 reduced soil CO2e emissions, ranging from 2.2 to 13.6 kg CO2e/ha. However, none of these three nitrogen forms exhibited a significant effect on CH4 emissions. The pyrolysis temperature of biochar was found negatively correlated with soil CO2 and N2O emissions. The alkaline substances presented in biochar pyrolyzed at 500-700 °C raised soil pH, increased the ratio of Gram-negative to Gram-positive bacteria, and enhanced the relative abundance of Sphingomonadaceae. Moreover, the co-application of KNO3 based nitrogen fertilizer and biochar increased the total carbon/inorganic nitrogen ratio and reduces the relative abundance of Nitrospirae. This series of reactions led to a significant increase in soil DOC content, meanwhile reduced soil CO2 emissions, and inhibited the nitrification process and decreased the emission of soil N2O. This study provided a scientific basis for the rational application of biochar in soil.
Asunto(s)
Dióxido de Carbono , Carbón Orgánico , Fertilizantes , Nitrógeno , Óxido Nitroso , Suelo , Carbón Orgánico/química , Fertilizantes/análisis , Suelo/química , Óxido Nitroso/análisis , Nitrógeno/análisis , Dióxido de Carbono/análisis , Contaminantes Atmosféricos/análisis , Gases de Efecto Invernadero/análisis , Agricultura/métodosRESUMEN
Vegetables capture antibiotic resistance genes (ARGs) from the soil and then pass them on to consumers through the delivery chain and food chain, and are therefore the key node that may increase the risk of human exposure to ARGs. This study investigates the patterns and driving forces behind the transmission of ARGs from soil to vegetables by the commonly planted cash crops in the coastal region of southern China, i.e. broccoli, pumpkin, and broad bean, to investigate. The study used metagenomic data to reveal the microbial and ARGs profiles of various vegetables and the soil they are grown. The results indicate significant differences in the accumulation of ARGs among different vegetables harvested in the same area at the same time frame, and the ARGs accumulation ability of the three vegetables was in the order of broccoli, broad bean, and pumpkin. In addition, broccoli collected the highest number of ARGs in types (n = 14), while pumpkin (n = 13) does not obtain trimethoprim resistance genes and broad beans (n = 10) do not obtain chloramphenicol, fosmidomycin, quinolone, rifamycin, or trimethoprim resistance genes. Host tracking analysis shows a strong positive correlation (|rho| > 0.8, p < 0.05) between enriched ARGs and plant companion microbes. Enrichment analysis of metabolic pathways of companion microbes shows that vegetables exhibit a discernible enrichment of companion microbes, with significant differences among vegetables. This phenomenon is primarily due to the screening of carbohydrate metabolism capabilities among companion microbes and leads varied patterns of ARGs that spread from the soil to vegetables. This offers a novel insight into the intervention of foodborne transmission of ARGs.