Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 261
Filtrar
1.
Adv Mater ; : e2403316, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39286894

RESUMEN

Quick-drying fabrics, renowned for their rapid sweat evaporation, have witnessed various applications in strenuous exercise. Profiled fiber textiles exhibit enhanced quick-drying performance, which is attributed to the excellent wicking effect within fibrous bundles, facilitating the rapid transport of sweat. However, the evaporation process is not solely influenced by macroscopic liquid transport but also by microscopic liquid spreading on the fibers where periodic liquid knots induced by spontaneous fluidic instability significantly reduce the evaporation area. Here, a cross-shaped profiled fiber with high off-circularity, featured as multiple concavities along the fibrous longitude-axis, which enables the formation of a homogeneous thin liquid film on a single fiber without any periodic liquid knots, is developed. The high off-circularity cross-sections help overcoming Plateau-Rayleigh instability by tuning the Laplace pressure difference, further facilitated by capillary flow along the concave surface. The homogeneous thin liquid film on a single fiber is responsible for maximizing the evaporation area, resulting in excellent overall evaporation capacity. Consequently, fabrics made from such fibers exhibit rapid evaporation behavior, with evaporation rates ≈50% higher than those of cylindrical fabrics. It is envisioned that profiled fibers may provide inspiration for the manipulating homogeneous liquid films for applications in fluid coatings and functional textiles.

2.
Carbohydr Polym ; 346: 122607, 2024 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-39245491

RESUMEN

Integrating flexible piezoelectric nanogenerators (PENGs) into wearable and portable electronics offers promising prospects for motion monitoring. However, it remains a significant challenge to develop environmentally friendly PENGs using biodegradable and cost-effective natural polymers for mechanical energy harvesting and self-powered sensing. Herein, reduced graphene oxide (rGO) and barium titanate (BTO) were introduced into regenerated cellulose pulp to fabricate a composite porous film-based PENG. The incorporation of rGO not only increased the electrical conductivity of the porous film but also enhanced the dispersibility of BTO. Moreover, the unique pore structure of the composite porous film improved the polarization effect of the air inside the pores, thereby greatly boosting the overall piezoelectric performance. The piezoelectric coefficient of the resulting composite porous film reaches up to 41.5 pC·N-1, which is comparable to or higher than those reported in similar studies. Consequently, the PENG assembled from this cellulose/rGO/BTO composite porous film (CGB-PENG) achieved an output voltage of 47 V, a current of 4.6 µA, and a power density of 30 µW·cm-2, approximately three times the output voltage and ten times the power density of similar studies. This work presents a feasible approach for the fabrication of high-performance cellulose-based PENGs derived from recycled waste cotton textiles.

3.
Adv Mater ; : e2406480, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267419

RESUMEN

Cephalopod skins evolve multiple functions in response to environmental adaptation, encompassing nonlinear mechanoreponse, damage tolerance property, and resistance to seawater. Despite tremendous progress in skin-mimicking materials, the integration of these desirable properties into a single material system remains an ongoing challenge. Here, drawing inspiration from the structure of reflectin proteins in cephalopod skins, a long-term anti-salt elastomer with skin-like nonlinear mechanical properties and extraordinary damage resistance properties is presented. Cation-π interaction is incorporated to induce the geometrically confined nanophases of hydrogen bond domains, resulting in elastomers with exceptional true tensile strength (456.5 ± 68.9 MPa) and unprecedently high fracture energy (103.7 ± 45.7 kJ m-2). Furthermore, the cation-π interaction effectively protects the hydrogen bond domains from corrosion by high-concentration saline solution. The utilization of the resultant skin-like elastomer has been demonstrated by aquatic soft robotics capable of grasping sharp objects. The combined advantages render the present elastomer highly promising for salt enviroment applications, particularly in addressing the challenges posed by sweat, in vivo, and harsh oceanic environments.

4.
Natl Sci Rev ; 11(10): nwae235, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39301068

RESUMEN

This work explores the pivotal breakthroughs and historical developments in fibers over the past century, while also identifying future research directions and emerging trends that promise to shape the future of this field.

5.
J Mater Chem B ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39311061

RESUMEN

Continuous monitoring of biomechanical signals generated from the injured Achilles tendon is essential for the deep understanding of the recovery or rehabilitation process, thus decreasing the risk of secondary injuries. With tissue-like components and adjustable properties, hydrogel-based biomechanical sensors are considered promising materials for human motion detection. However, existing hydrogels are characterized by inferior mechanical properties with strength and modulus typically lower than 1 MPa, as well as poor stability under physiological conditions, which hampers their applications in implantable devices. Moreover, acquiring the stress signal from collected electrical signals remains challenging. Herein, based on the regulation of polymer aggregation, a high-strength fibrous sensor composed of polyvinyl alcohol (PVA) and reduced graphene oxide (rGO) for in vivo monitoring is prepared through a two-step procedure, including freeze-thaw and freeze-soak. Benefiting from the synergy of crystallization, Hofmeister effect and nanocomposite, the hydrogel fibers feature high tensile strength (8.34 ± 0.66 MPa) and elastic modulus (1.15 ± 0.10 MPa). Meanwhile, the removal of salt ions during fabrication improves the water content (69.18 ± 1.47%) and anti-swelling performance of such fibers and minimizes side effects after implantation. It is demonstrated that the fibrous sensor could record the relative resistance changes upon stretching with ideal sensitivity (GF = 1.57) and convert them into bearing stress through formula derivation and calculations. In vitro and in vivo assays further confirm its feasibility for real-time monitoring of joint motion, providing important references for medical diagnosis and treatment.

6.
Adv Mater ; : e2407009, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39328019

RESUMEN

Elastocaloric cooling is one of the most promising solid-state cooling approaches to address the issues of energy shortage and global warming. However, the cooling efficiency and cycle life of this technology need to be improved, and the required driving force shall be reduced. Here, a novel elastocaloric heat pump by periodic non-linear stress is developed by employing fiber twisting and separated cooling and heating media. The non-linear stress generated by fiber twisting yields a hierarchical, rigid-yet-flexible architecture and a periodic entropy spatial distribution, which result in a low mechanical hysteresis work and a high cooling efficiency (a maximum material coefficient of performance (COP) of 30.8 and a maximum Carnot efficiency of 82%). The torsional non-linear stress inhibits crack propagation and results in a highly extended cycle life (14752 cycles, more than ten times of fiber stretching). The heat pump exhibits a maximum average temperature span of 25.6 K, a maximum specific cooling power of 1850 W Kg-1, a maximum device COP of 19.5, and a maximum device power of 5.0 W, under each optimal condition.

7.
Heliyon ; 10(15): e35226, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39165994

RESUMEN

Objective: This work aimed to assess the bonding performance of universal adhesive and self-etch adhesives, and a comparative study was conducted using the same acid etching mode. Methods: The selective acid-etching mode was used to simulate bonded restorations to teeth defects of isolated human molars including enamel and dentin. Microtensile bond strength and microleakage of all adhesives were tested and compared after 24 h and 5000 thermocycles, respectively. The morphology of the adhesive interfaces was observed by scanning electron microscopy (SEM) and fluorescent staining. Results: The bond strength and microleakage of Single Bond Universal (SBU) adhesive are comparable to those of self-etch adhesives, although Clearfil Tri-S Bond (S3) exhibited significantly lower bond strength compared to other two self-etch groups evaluated. No significant differences were found in the microleakage resistance of these four adhesives, suggesting their similar effectiveness in sealing the margins of the restorations, although SBU showed the highest resistance of microleakage. The SEM and fluorescent staining results of the resin-dentin interfaces further revealed the formation of abundant resin tags for all adhesives. Conclusions: Self-etch adhesives evaluated in this study performed similarly to universal adhesives in selective acid-etch mode for bond strength and microleakage resistance. Both types of adhesives exhibited effective penetration capabilities into the dentinal tubules. Clinical significance: During the adhesion processes involving both dentin and enamel, self-etch adhesives can serve as alternatives to universal adhesives in selective acid-etch mode.

8.
Chem Soc Rev ; 53(17): 8790-8846, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39087714

RESUMEN

Fabrics represent a unique platform for seamlessly integrating electronics into everyday experiences. The advancements in functionalizing fabrics at both the single fibre level and within constructed fabrics have fundamentally altered their utility. The revolution in materials, structures, and functionality at the fibre level enables intimate and imperceptible integration, rapidly transforming fibres and fabrics into next-generation wearable devices and systems. In this review, we explore recent scientific and technological breakthroughs in smart fibre-enabled fabrics. We examine common challenges and bottlenecks in fibre materials, physics, chemistry, fabrication strategies, and applications that shape the future of wearable electronics. We propose a closed-loop smart fibre-enabled fabric ecosystem encompassing proactive sensing, interactive communication, data storage and processing, real-time feedback, and energy storage and harvesting, intended to tackle significant challenges in wearable technology. Finally, we envision computing fabrics as sophisticated wearable platforms with system-level attributes for data management, machine learning, artificial intelligence, and closed-loop intelligent networks.

9.
Proc Natl Acad Sci U S A ; 121(34): e2404726121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145926

RESUMEN

Self-healing covalent adaptable networks (CANs) are not only of fundamental interest but also of practical importance for achieving carbon neutrality and sustainable development. However, there is a trade-off between the mobility and cross-linking structure of CANs, making it challenging to develop CANs with excellent mechanical properties and high self-healing efficiency. Here, we report the utilization of a highly dynamic four-arm cross-linking unit with an internally catalyzed oxime-urethane group to obtain CAN-based ionogel with both high self-healing efficiency (>92.1%) at room temperature and superior mechanical properties (tensile strength 4.55 MPa and toughness 13.49 MJ m-3). This work demonstrates the significant potential of utilizing the synergistic electronic, spatial, and topological effects as a design strategy for developing high-performance materials.

10.
Biomater Adv ; 165: 214001, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39216317

RESUMEN

Artificial periosteum is deemed a novel strategy for inducing endogenous bone regeneration, but ideal periosteum substitutes achieved by orchestrating a biomimetic microenvironment for bone regeneration remain a significant challenge. Here, we design and fabricate a hybridized nanofiber-based artificial periosteum with boosted osteoinduction properties. Via a "molecular cage" biomineralization strategy, nano-hydroxyapatite (nano-HAp) with a controllable size (∼22 nm) and excellent dispersion serves as unique nano-additives for water-soluble polyvinyl-alcohol (PVA)-based artificial periosteum. The PVA/HAp composite is electrospun into nanofibers to replicate the extracellular-matrix-inspired nanostructure for inducing cell adhesion, proliferation, and fate manipulation. A simple post-crosslinking treatment is subsequently applied to further booster its mechanical strength (6.6 MPa) and swelling stability. The optimized sample of C-PVA/HAp (10 wt% nano-HAp) artificial periosteum features excellent biocompatibility and remarkable in vitro mineralization. Cell experiments demonstrate that its effectively boasted cell modulation for enhanced osteogenesis without the aid of growth factors, showing a possible activation of the ERK/MAPK signaling pathway. This work provides an effective strategy for designing novel HAp nano-additives and expands the possibility of biomimetic fabrication for more advanced nanofiber-based artificial periosteum.


Asunto(s)
Durapatita , Nanofibras , Osteogénesis , Periostio , Alcohol Polivinílico , Nanofibras/química , Alcohol Polivinílico/química , Durapatita/química , Durapatita/farmacología , Osteogénesis/efectos de los fármacos , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Regeneración Ósea/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Adhesión Celular/efectos de los fármacos , Sustitutos de Huesos/química
11.
ACS Appl Mater Interfaces ; 16(27): 34578-34590, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38946497

RESUMEN

Meeting the exacting demands of wound healing encompasses rapid coagulation, superior exudate absorption, high antibacterial efficacy, and imperative support for cell growth. In this study, by emulating the intricate structure of natural skin, we prepare a multifunctional porous bilayer artificial skin to address these critical requirements. The bottom layer, mimicking the dermis, is crafted through freeze-drying a gel network comprising carboxymethyl chitosan (CMCs) and gelatin (GL), while the top layer, emulating the epidermis, is prepared via electrospinning poly(l-lactic acid) (PLLA) nanofibers. With protocatechuic aldehyde and gallium ion complexation (PA@Ga) as cross-linking agents, the bottom PA@Ga-CMCs/GL layer featured an adjustable pore size (78-138 µm), high hemostatic performance (67s), and excellent bacterial inhibition rate (99.9%), complemented by an impressive liquid-absorbing capacity (2000% swelling rate). The top PLLA layer, with dense micronanostructure and hydrophobic properties, worked as a shield to effectively thwarted liquid or bacterial penetration. Furthermore, accelerated wound closure, reduced inflammatory responses, and enhanced formation of hair follicles and blood vessels are achieved by the porous artificial skin covered on the surface of wound. Bilayer artificial skin integrates the advantages of nanofibers and freeze-drying porous materials to effectively replicate the protective properties of the epidermal layer of the skin, as well as the cell migration and tissue regeneration of the dermis. This bioabsorbable artificial skin demonstrates structural and functional comparability to real skin, which would advance the field of wound care through its multifaceted capabilities.


Asunto(s)
Quitosano , Nanofibras , Piel Artificial , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Quitosano/química , Quitosano/análogos & derivados , Porosidad , Animales , Nanofibras/química , Poliésteres/química , Poliésteres/farmacología , Gelatina/química , Antibacterianos/química , Antibacterianos/farmacología , Ratones , Staphylococcus aureus/efectos de los fármacos , Humanos
12.
Adv Mater ; 36(36): e2314158, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39081084

RESUMEN

The development of functional surgical sutures with excellent mechanical properties, good fluorescence, and high cytocompatibility is highly required in the field of medical surgeries. Achieving fibers that simultaneously exhibit high mechanical robustness, good spinnability, and durable fluorescence emission has remained challenging up to now. Taking inspiration from the spinning process of spider silk and the luminescence mechanism of jellyfish, this work reports a luminous artificial spider silk prepared with the aim of balancing the fiber spinnability and mechanical robustness. This is realized by employing highly hydrated segments with aggregation-induced luminescence for enhancing the fiber spinnability and polyhydroxyl segments for increasing the fiber mechanical robustness. Twist insertion during fiber spinning improves the fiber strength, toughness, and fluorescence emission. Furthermore, coating the fiber with an additional polymer layer results in a "sheath-core" architecture with improved mechanical properties and capacity to withstand water. This work provides a new design strategy for performing luminescent and robust surgical sutures.


Asunto(s)
Seda , Arañas , Suturas , Animales , Seda/química , Materiales Biomiméticos/química , Escifozoos/química , Luminiscencia , Resistencia a la Tracción , Ensayo de Materiales
13.
Sci Bull (Beijing) ; 69(15): 2439-2455, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38853045

RESUMEN

Flexible light-emitting fibers and fabrics serve to bridge human-machine interactions. The desire for practical applications and the commercialization of flexible light-emitting fibers has accelerated structural progress and improvements. This review focuses on the structural design of light-emitting fibers and fabrics, starting with a summary of design principles, emission mechanisms, and structural evolution of coaxial structured light-emitting fibers. Subsequently, we explore recent advances in the helical structure design strategies that boost the mechanical sensitivity of light-emitting fibers. Following that, we analyze continuous preparation processes and the development of large-area intelligent light-emitting fabrics based on interwoven structures. Examples based on stiff and rigid inorganic-based light-emitting diodes integrated into flexible systems are also presented. Finally, we discuss the current challenges and future opportunities for light-emitting applications in the field of wearable and smart devices.

14.
Natl Sci Rev ; 11(6): nwae158, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38881574

RESUMEN

Fiber electronics with flexible and weavable features can be easily integrated into textiles for wearable applications. However, due to small sizes and curved surfaces of fiber materials, it remains challenging to load robust active layers, thus hindering production of high-sensitivity fiber strain sensors. Herein, functional sensing materials are firmly anchored on the fiber surface in-situ through a hydrolytic condensation process. The anchoring sensing layer with robust interfacial adhesion is ultra-mechanically sensitive, which significantly improves the sensitivity of strain sensors due to the easy generation of microcracks during stretching. The resulting stretchable fiber sensors simultaneously possess an ultra-low strain detection limit of 0.05%, a high stretchability of 100%, and a high gauge factor of 433.6, giving 254-folds enhancement in sensitivity. Additionally, these fiber sensors are soft and lightweight, enabling them to be attached onto skin or woven into clothes for recording physiological signals, e.g. pulse wave velocity has been effectively obtained by them. As a demonstration, a fiber sensor-based wearable smart healthcare system is designed to monitor and transmit health status for timely intervention. This work presents an effective strategy for developing high-performance fiber strain sensors as well as other stretchable electronic devices.

15.
Heliyon ; 10(11): e31985, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38882304

RESUMEN

Dust removal coatings for polyimide (PI)-based photovoltaic modules used in lunar rovers were fabricated successfully through the blade-coating method using silicon dioxide (SiO2) nanoparticles and γ-aminopropyltriethoxysilane (KH550). The dust removal performance, morphology, transparency, and adhesive force of the coating can be optimized by adjusting the pH and the mass ratios of SiO2 and KH550. The designed coating demonstrates excellent dust removal performance, achieving an percentage of over 85 %. Moreover, the coating has minimal impact on the transparency of the PI substrate and exhibits strong adhesion to it. Additionally, the coating shows remarkable resistance to both high and low temperatures. Even after undergoing five cycles of thermal treatment ranging from -196 to 160 °C, there were no significant changes in the morphology or dust removal performance of the coating. Therefore, this coating exhibits tremendous potential for application in the dust removal of photovoltaic modules in lunar rovers.

16.
Adv Mater ; 36(32): e2403908, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828745

RESUMEN

The development of high-performance polymer is crucial for the fabrication of triboelectric nanogenerators (TENGs) used in extreme conditions. Liquid crystal polyarylate thermosets (LCTs) demonstrate great potential as triboelectric material by virtue of exceptional comprehensive properties. However, there are only a few specific end-groups like phenylethynyl matching the LCT polycondensation temperature (above 300 °C). Moreover, the excellent properties of LCTs rely on the crosslinked network formed with long curing time at high temperature, restricting their further application in triboelectric material. Herein, a fast-curing LCT is designed by terminating with 4-maleimidophenol possessing appropriate reactivity. The resultant LCT (MA-LC-MA) exhibits much lower polycondensation temperature (250-270 °C) and curing temperature of 300 °C within only 1 min compared to typical LCTs (cured at 370 °C for 1 h). Furthermore, the cured MA-LC-MA retains a high glass transition temperature of 135 °C, storage modulus of 6 MPa even at 350 °C, and great electrical output performance. Additionally, triboelectric measurement related to the dielectric properties that vary with crosslinked network is innovatively utilized as an analysis technique of curing progress. This work provides a new strategy to design high-performance TENGs and promotes the development of next generation thermosets in extreme conditions.

17.
ACS Appl Mater Interfaces ; 16(23): 30421-30429, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38832560

RESUMEN

Electrochromic devices (ECDs), which are capable of modulating optical properties in the visible and long-wave infrared (LWIR) spectra under applied voltage, are of great significance for military camouflage. However, there are a few materials that can modulate dual frequency bands. In addition, the complex and specialized structural design of dual-band ECDs poses significant challenges. Here, we propose a novel approach for a bendable ECD capable of modulating LWIR radiation and displaying multiple colors. Notably, it eliminates the need for a porous electrode or a grid electrode, thereby improving both the response speed and fabrication feasibility. The device employs multiwalled carbon nanotubes (MWCNTs) as both the transparent electrode and the LWIR modulator, polyaniline (PANI) as the electrochromic layer, and ionic liquids (HMIM[TFSI]) as the electrolyte. The ECD is able to reduce its infrared emissivity (Δε = 0.23) in a short time (resulting in a drop in infrared temperature from 50 to 44 °C) within a mere duration of 0.78 ± 0.07 s while changing its color from green to yellow within 3 s when a positive voltage of 4 V is applied. In addition, it exhibits excellent flexibility, even under bending conditions. This simplified structure provides opportunities for applications such as wearable adaptive camouflage and multispectral displays.

18.
Chem Soc Rev ; 53(14): 7489-7530, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38894663

RESUMEN

Global population growth and industrialization have exacerbated the nonrenewable energy crises and environmental issues, thereby stimulating an enormous demand for producing environmentally friendly materials. Typically, biomass-based aerogels (BAs), which are mainly composed of biomass materials, show great application prospects in various fields because of their exceptional properties such as biocompatibility, degradability, and renewability. To improve the performance of BAs to meet the usage requirements of different scenarios, a large number of innovative works in the past few decades have emphasized the importance of micro-structural design in regulating macroscopic functions. Inspired by the ubiquitous random or regularly arranged structures of materials in nature ranging from micro to meso and macro scales, constructing different microstructures often corresponds to completely different functions even with similar biomolecular compositions. This review focuses on the preparation process, design concepts, regulation methods, and the synergistic combination of chemical compositions and microstructures of BAs with different porous structures from the perspective of gel skeleton and pore structure. It not only comprehensively introduces the effect of various microstructures on the physical properties of BAs, but also analyzes their potential applications in the corresponding fields of thermal management, water treatment, atmospheric water harvesting, CO2 absorption, energy storage and conversion, electromagnetic interference (EMI) shielding, biological applications, etc. Finally, we provide our perspectives regarding the challenges and future opportunities of BAs. Overall, our goal is to provide researchers with a thorough understanding of the relationship between the microstructures and properties of BAs, supported by a comprehensive analysis of the available data.

19.
Macromol Rapid Commun ; : e2400302, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877645

RESUMEN

Polyamide 6 (PA6) fiber has the advantages of high strength and good wear resistance. However, it is still challenging to effectively load inorganic antibacterial agents into polymer substrates without antimicrobial activity. In this work, graphene oxide is used as a carrier, which is modified with an aminosilane coupling agent (AEAPTMS) to enhance the compatibility and antimicrobial properties of the inorganic material, as well as to improve its thermal stability in a high-temperature melting environment. Cuprous oxide-loaded aminated grapheme (Cu2O-GO-NH2) is constructed by in situ growth method, and further PA6/Cu2O-GO-NH2 fibers are prepared by in situ polymerization. The composite fiber has excellent washing resistance. After 50 times of washing, its bactericidal rates against Bacillus subtilis and Escherichia coli are 98.85% and 99.99%, respectively. In addition, the enhanced compatibility of Cu2O-GO-NH2 with the PA6 matrix improves the orientation and crystallinity of the composite fibers. Compared with PA6/Cu2O-GO fibers, the fracture strength of PA6/Cu2O-GO-NH2 fibers increases from 3.0 to 4.2 cN/dtex when the addition of Cu2O-GO-NH2 is 0.2 wt%. Chemical modification and in situ concepts help to improve the compatibility of inorganic antimicrobial agents with organic polymers, which can be applied to the development of medical textiles.

20.
Dent Mater ; 40(6): 941-950, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38719709

RESUMEN

OBJECTIVE: Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS: Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS: Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE: Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.


Asunto(s)
Antibacterianos , Bisfenol A Glicidil Metacrilato , Ensayo de Materiales , Streptococcus mutans , Triterpenos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Triterpenos/química , Triterpenos/farmacología , Streptococcus mutans/efectos de los fármacos , Bisfenol A Glicidil Metacrilato/química , Viscosidad , Materiales Dentales/química , Materiales Dentales/farmacología , Materiales Dentales/síntesis química , Polimerizacion , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacología , Resinas Compuestas/química , Resinas Compuestas/síntesis química , Resinas Compuestas/farmacología , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Betulínico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...