Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Appl Basic Med Res ; 14(2): 85-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38912363

RESUMEN

Background: Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results: First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions: Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.

2.
J Orthop Res ; 42(9): 1933-1942, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38520666

RESUMEN

Osteoarthritis (OA) is a common degenerative joint disease, and subchondral osteosclerosis is an important pathological change that occurs in its late stages. Cardamonin (CD) is a natural flavonoid isolated from Alpinia katsumadai that has anti-inflammatory activity. The objectives of this study were to investigate the therapeutic effects and potential mechanism of CD in regulating OA subchondral osteosclerosis at in vivo and in vitro settings. Eight-week-old male C57BL/6J mice were randomly divided into four groups: sham operation, anterior cruciate ligament transection (ACLT)-induced OA model, low-dose and high-dose CD treated ACLT-OA model groups. Histological assessment and immunohistochemical examinations for chondrocyte metabolism-related markers metalloproteinase-13, ADAMTS-4, Col II, and Sox-9 were performed. Microcomputed tomography was used to assess the sclerosis indicators in subchondral bone. Further, MC3T3-E1 (a mouse calvarial preosteoblast cell line) cells were treated with various concentrations of CD to reveal the influence and potential molecular pathways of CD in osteogenic differentiations. Animal studies suggested that CD alleviated the pathological changes in OA mice such as maintaining integrity and increasing the thickness of hyaline cartilage, decreasing the thickness of calcified cartilage, decreasing the Osteoarthritis Research Society International score, regulating articular cartilage metabolism, and inhibiting subchondral osteosclerosis. In vitro investigation indicated that CD inhibited alkaline phosphatase expression and production of calcium nodules during osteogenic differentiation of MC3T3-E1 cells. In addition, CD inhibited the expression of osteogenic differentiation-related indicators and Wnt/ß-catenin pathway-related proteins. In conclusion, CD inhibits osteogenic differentiation by downregulating Wnt/ß-catenin signaling and alleviating subchondral osteosclerosis in a mouse model of OA.


Asunto(s)
Diferenciación Celular , Chalconas , Ratones Endogámicos C57BL , Osteoartritis , Osteogénesis , Osteosclerosis , Vía de Señalización Wnt , Animales , Masculino , Chalconas/farmacología , Chalconas/uso terapéutico , Osteogénesis/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Ratones , Osteosclerosis/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , beta Catenina/metabolismo
3.
Front Pharmacol ; 14: 1165212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261285

RESUMEN

Introduction: Tanshinone IIA (Tan IIA), the major active lipophilic ingredient of Radix Salviae Miltiorrhizae, exerts various therapeutic effects on the cardiovascular system. We aimed to identify the preclinical evidence and possible mechanisms of Tan IIA as a cardioprotective agent in the treatment of myocardial ischemia/reperfusion injury. Methods: The study quality scores of twenty-eight eligible studies and data analyses were separately assessed using the CAMARADES 10-item checklist and Rev-Man 5.3 software. Results: The study quality score ranged from 3/10 to 7/10 points. The present study provided preliminary preclinical evidence that Tan IIA could significantly decrease the myocardial infarct size, cardiac enzyme activity and troponin levels compared with those in the control group (p < 0.05). Discussion: Tan IIA alleviated myocardial I/R injury via antioxidant, anti-inflammatory, anti-apoptosis mechanisms and improved circulation and energy metabolism. Thus, Tan IIA is a promising cardioprotective agent for the treatment of myocardial ischemia/reperfusion injury and should be further investigated in clinical trials.

4.
Bioengineered ; 13(1): 1276-1287, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34738865

RESUMEN

Long non-coding RNAs (lncRNAs) are closely associated with the development of lung adenocarcinoma (LADC). The present study focused on the role of LINC00960 in LADC. miRNA and mRNA expression levels were detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Cellular functions were evaluated by MTT, colony formation, and Transwell assays, respectively. LINC00960 Luciferase and RNA pull-down assays were performed to clarify the interaction between miR-124a and LINC00960 or Recombinant Sphingosine Kinase 1 (SphK1). We observed that LINC00960 was overexpressed in LADC tumor tissues and cell lines. LINC00960 knockdown suppressed the proliferation, migration, and invasion of LADC cells. Moreover, LINC00960 sponged miR-124a to inhibit the SphK1/S1P pathway in LADC cells. LINC00960 knockdown markedly reduced the rate of tumor growth. The luciferase reporter assay results demonstrated an interaction between miR-124a and LINC00960 or SphK1. This interaction was confirmed using the RNA pull-down assay. In addition, miR-124a downregulation or SphK1 upregulation reversed the inhibitory effects of LINC00960 knockdown on cellular functions of LADC cells, suggesting that LINC00960 may be a potential therapeutic biomarker for LADC via the miR-124a/SphK1 axis. Accordingly, LINC00960 may be a potential therapeutic biomarker for LADC.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , MicroARNs/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , ARN Largo no Codificante/genética , Regulación hacia Arriba , Células A549 , Adenocarcinoma del Pulmón/genética , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Neoplasias Pulmonares/genética , Masculino , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
5.
Front Pharmacol ; 10: 1204, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31680976

RESUMEN

Notoginsenoside R1 (NGR1) exerts pharmacological actions for a variety of diseases such as myocardial infarction, ischemic stroke, acute renal injury, and intestinal injury. Here, we conducted a preclinical systematic review of NGR1 for ischemia reperfusion (I/R) injury. Eight databases were searched from their inception to February 23rd, 2019; Review Manager 5.3 was applied for data analysis. CAMARADES 10-item checklist and cell 10-item checklist were used to evaluate the methodological quality. Twenty-five studies with 304 animals and 124 cells were selected. Scores of the risk of bias in animal studies ranged from 3 to 8, and the cell studies ranged from 3 to 5. NGR1 had significant effects on decreasing myocardial infarct size in myocardial I/R injury, decreasing cerebral infarction volume and neurologic deficit score in cerebral I/R injury, decreasing serum creatinine in renal I/R injury, and decreasing Park/Chiu score in intestinal I/R injury compared with controls (all P < 0.05 or P < 0.01). The multiple organ protection of NGR1 after I/R injury is mainly through the mechanisms of antioxidant, anti-apoptosis, and anti-inflammatory, promoting angiogenesis and improving energy metabolism. The findings showed the organ protection effect of NGR1 after I/R injury, and NGR1 can potentially become a novel drug candidate for ischemic diseases. Further translation studies are needed.

6.
Front Physiol ; 10: 1292, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681006

RESUMEN

Ginkgolide B (GB) is an extract of dried Ginkgo biloba leaves and possesses various pharmacological activities in the cardiovascular system. Herein, we aim to assess the available preclinical evidence and possible mechanisms of GB for myocardial ischemia/reperfusion injury. The study quality score was assessed using the CAMARADES 10-item checklist. Rev-Man 5.3 software was used for data analyses. Nineteen studies with total 437 animals were included for analysis. Meta-analyses indicated that GB interventions significantly reduce myocardial infarct size and cardiac markers when compared with control (P < 0.05). The possible mechanisms via which GB exerts cardioprotective effects are mainly associated with anti-oxidation, anti-inflammation, anti-apoptosis, and improvement of energy metabolism. Our study indicates that GB might be a promising cardioprotective agent for myocardial ischemia/reperfusion injury and may contribute to future clinical trial design.

7.
Front Pharmacol ; 10: 844, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31427964

RESUMEN

Coronary heart disease (CHD) remains a major cause of mortality with a huge economic burden on healthcare worldwide. Here, we conducted a systematic review to investigate the efficacy and safety of Chinese herbal medicine (CHM) for CHD based on high-quality randomized controlled trials (RCTs) and summarized its possible mechanisms according to animal-based researches. 27 eligible studies were identified in eight database searches from inception to June 2018. The methodological quality was assessed using seven-item checklist recommended by Cochrane Collaboration. All the data were analyzed using Rev-Man 5.3 software. As a result, the score of study quality ranged from 4 to 7 points. Meta-analyses showed CHM can significantly reduce the incidence of myocardial infarction and percutaneous coronary intervention, and cardiovascular mortality (P < 0.05), and increase systolic function of heart, the ST-segment depression, and clinical efficacy (P < 0.05). Adverse events were reported in 11 studies, and CHMs were well tolerated in patients with CHD. In addition, CHM exerted cardioprotection for CHD, possibly altering multiple signal pathways through anti-inflammatory, anti-oxidation, anti-apoptosis, improving the circulation, and regulating energy metabolism. In conclusion, the evidence available from present study revealed that CHMs are beneficial for CHD and are generally safe.

8.
Oxid Med Cell Longev ; 2019: 4275984, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31178960

RESUMEN

BACKGROUND: Acute myocardial infarction (AMI) remains a leading cause of morbidity and mortality worldwide. The idea of therapeutic angiogenesis in ischemic myocardium is a promising strategy for MI patients. Buyang Huanwu decoction (BHD), a famous Chinese herbal prescription, exerted antioxidant, antiapoptotic, and anti-inflammatory effects, which contribute to cardio-/cerebral protection. Here, we aim to investigate the effects of BHD on angiogenesis through the caveolin-1 (Cav-1)/vascular endothelial growth factor (VEGF) pathway in MI model of mice. MATERIALS AND METHODS: C57BL/6 mice were randomly divided into 3 groups by the table of random number: (1) sham-operated group (sham, n = 15), (2) AMI group (AMI+sham, n = 20), and (3) BHD-treated group (AMI+BHD, n = 20). 2,3,5-Triphenyltetrazolium chloride solution stain was used to determine myocardial infarct size. Myocardial histopathology was tested using Masson staining and hematoxylin-eosin staining. CD31 immunofluorescence staining was used to analyze the angiogenesis in the infarction border zone. Western blot analysis, immunofluorescence staining, and/or real-time quantitative reverse transcription polymerase chain reaction was applied to test the expression of Cav-1, VEGF, vascular endothelial growth factor receptor 2 (VEGFR2), and/or phosphorylated extracellular signal-regulated kinase (p-ERK). All statistical analyses were performed using the SPSS 20.0 software and GraphPad Prism 6.05. Values of P < 0.05 were considered as statistically significant. RESULTS AND CONCLUSION: Compared with the AMI group, the BHD-treated group showed a significant improvement in the heart weight/body weight ratio, echocardiography images, cardiac function, infarct size, Mason staining of the collagen deposition area, and density of microvessel in the infarction border zone (P < 0.05). Compared with the AMI group, BHD promoted the expression of Cav-1, VEGF, VEGFR2, and p-ERK in the infarction border zone after AMI. BHD could exert cardioprotective effects on the mouse model with AMI through targeting angiogenesis via Cav-1/VEGF signaling pathway.


Asunto(s)
Caveolina 1/metabolismo , Medicamentos Herbarios Chinos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Enfermedad Aguda , Animales , Modelos Animales de Enfermedad , Medicamentos Herbarios Chinos/farmacología , Masculino , Ratones , Infarto del Miocardio/patología , Neovascularización Patológica/patología , Transducción de Señal
9.
Front Pharmacol ; 9: 729, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30090062

RESUMEN

Ligustrazine (Lig) is one of the main effective components of Ligusticum Chuanxiong Hort, which possesses a variety of biological activities in the cardiovascular system. Here, we conducted a preclinical systematic review to investigate the efficacy of Lig for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Twenty-five studies involving 556 animals were identified by searching 6 databases from inception to August 2017. The methodological quality was assessed by using Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) 10-item checklist. All the data were analyzed using Rev-Man 5.3 software. As a result, the score of study quality ranged from 2 to 6 points. Meta-analyses showed Lig can significantly decrease the myocardial infarct size, cardiac enzymes and troponin compared with control (P < 0.01). The possible mechanisms of Lig for myocardial infarction are antioxidant, anti-inflammatory, anti-apoptosis activities and improving coronary blood flow and myocardial metabolism. In conclusion, the findings indicated that Lig exerts cardio protection through multiple signaling pathways in myocardial ischemia/reperfusion injury.

10.
Front Physiol ; 9: 795, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30018562

RESUMEN

Astragaloside IV (AS-IV), the major pharmacological extract from Astragalus membranaceus Bunge, possesses a variety of biological activities in the cardiovascular systems. Here, we aimed to evaluate preclinical evidence and possible mechanism of AS-IV for animal models of myocardial ischemia/reperfusion (I/R) injury. Studies of AS-IV in animal models with myocardial I/R injury were identified from 6 databases from inception to May, 2018. The methodological quality was assessed by using CAMARADES 10-item checklist. All the data were analyzed using Rev-Man 5.3 software. As a result, 22 studies with 484 animals were identified. The quality score of studies ranged from 3 to 6 points. Meta-analyses showed AS-IV can significantly decrease the myocardial infarct size and left ventricular ejection fraction, and increase shortening fraction compared with control group (P < 0.01). Significant decreasing of cardiac enzymes and cardiac troponin and increasing of decline degree in ST-segment were reported in one study each (P < 0.05). Additionally, the possible mechanisms of AS-IV for myocardial I/R injury are promoting angiogenesis, improving the circulation, antioxidant, anti-inflammatory and anti-apoptosis. Thus, AS-IV is a potential cardioprotective candidate for further clinical trials of myocardial infarction.

11.
Pak J Pharm Sci ; 31(6(Special)): 2819-2822, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30630791

RESUMEN

Aim of the study was to observe and evaluate the postoperative hemorrhage and allogenic blood transfusion condition in patients who were exposed to different levels of clopidogrel and aspirin beforeon-pump coronary artery bypass graft surgery (CABG). A total of 180 patients underwent on-pump CABG at our hospital were enrolled and divided into treatment group, discontinuation group and control group based on their preoperative use of clopidogrel and aspirin, with 60 patients in each group. And the postoperative hemorrhage and allogenic blood transfusion condition were observed and evaluated. Compared with the control group, the postoperative total drainage and the occurrence of major bleeding were significantly higher in the treatment group (p<0.05). The transfusion volume and infusion rates of packed red blood cells and fresh frozen plasma and the total blood transfusion rate were decreased progressively in accordance with the treatment group, discontinuation group and control group. The transfusion volume and infusion rates of packed red blood cells and fresh frozen plasma, and the total blood transfusion rate were significantly higher in the treatment group when compared with the control group (p<0.05). And the total blood transfusion rate was significantly higher in the treatment group when compared with the discontinuation group (p<0.05). The postoperative hemorrhage and allogenic blood transfusion rate would be significantly up-regulated when patients were exposed to clopidogrel and aspirin in the week before on-pump CABG.


Asunto(s)
Pérdida de Sangre Quirúrgica/estadística & datos numéricos , Clopidogrel/uso terapéutico , Puente de Arteria Coronaria/métodos , Hemorragia Posoperatoria/prevención & control , Cuidados Preoperatorios/métodos , Privación de Tratamiento , Adulto , Anciano , Aspirina/uso terapéutico , Transfusión Sanguínea/estadística & datos numéricos , Quimioterapia Combinada , Femenino , Humanos , Masculino , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/uso terapéutico , Adulto Joven
12.
Front Pharmacol ; 9: 1445, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30618743

RESUMEN

Background: Danshensu (DSS) possesses unique bioactivity on the cardiovascular system. However, there is a lack of systematical summary of DSS for acute myocardial ischemia injury and no quality assessment tool for the systematical review of cell experiments. Here, we aimed to assess the preclinical evidences and possible mechanisms of DSS for myocardial ischemia injury, and to develop a quality assessment tool for the systematical review of cell experiments. Methods: Thirty-two studies with 473 animals and 134 cells were identified by searching seven databases. All data analysis was performed using RevMan 5.3. CAMARADES 10-item checklist was used to assess the methodological quality of animal experiments. A new 10-item checklist was first developed to assess the methodological quality of cell studies. Results: The score of study quality ranged from 3 to 7 points in animal studies, while the cell studies scored 3-6 points. Meta-analysis showed that DSS had significant effects on reducing myocardial infarct (MI) size in vivo, and increasing cell viability and reducing apoptosis rate in vitro compared with controls (P < 0.01). The possible mechanisms of DSS for MI are improving circulation, antioxidant, anti-apoptosis, anti-inflammatory, promoting angiogenesis, anti-excessive autophagy, anti-calcium overload, and improving energy metabolism. Conclusions: DSS could exert cardioprotective effect on myocardial ischemia injury, and thus is a probable candidate for further clinical trials andtreatment of AMI. In addition, the newly devloped 10-item checklist for assessing methodological quality of cell study that recommened to use the sysmatic review of cell studies.

13.
Oxid Med Cell Longev ; 2017: 6313625, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29430282

RESUMEN

Ginseng is an important herbal drug that has been used worldwide for many years. Ginsenoside Rb1 (G-Rb1), the major pharmacological extract from ginseng, possesses a variety of biological activities in the cardiovascular systems. Here, we conducted a preclinical systematic review to investigate the efficacy of G-Rb1 for animal models of myocardial ischemia/reperfusion injury and its possible mechanisms. Ten studies involving 211 animals were identified by searching 6 databases from inception to May 2017. The methodological quality was assessed by using the CAMARADES 10-item checklist. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 7 points. Meta-analyses showed that G-Rb1 can significantly decrease the myocardial infarct size and cardiac enzymes (including lactate dehydrogenase, creatine kinase, and creatine kinase-MB) when compared with control group (P < 0.01). Significant decrease in cardiac troponin T and improvement in the degree of ST-segment depression were reported in one study (P < 0.05). Additionally, the possible mechanisms of G-Rb1 for myocardial infarction are antioxidant, anti-inflammatory, antiapoptosis, promoting angiogenesis and improving the circulation. Thus, G-Rb1 is a potential cardioprotective candidate for further clinical trials of myocardial infarction.


Asunto(s)
Ginsenósidos/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Panax/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Ginsenósidos/administración & dosificación , Ginsenósidos/farmacología , Masculino , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...