Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 66(8): 5584-5610, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37027512

RESUMEN

Stimulator of interferon gene (STING) is a critical adaptor protein that has a pivotal role in triggering inherent immune responses to infection. STING-linked interferon production has been involved in anti-inflammation, anti-infection, and antitumor immunity. Herein, a series of amidobenzimidazole analogues as STING agonists were profiled for potency and drug-like properties. By structure-based modification and optimization based on mono-aminobenzimidazole (ABZI), analogues with nanomolar STING agonistic activities were obtained. Among them, compounds D59 and D61 significantly increased the transcription of IFN-ß and proinflammatory cytokine CXCL10, as well as dramatically induced the phosphorylation of STING downstream proteins in THP1 cells. Furthermore, compound D61 exhibited favorable pharmacokinetic properties and metabolic stabilities. In a CT-26 syngeneic mice-bearing tumor model, D61 effectively inhibited tumor growth with good tolerance when administered via intratumoral, intravenous, intraperitoneal, and oral routes. This research on orally bioavailable amidobenzimidazole analogues expands the diversity of chemical structures of agonists for STING-mediated immunotherapy.


Asunto(s)
Neoplasias , Receptores de Interferón , Animales , Ratones , Fosforilación , Interferones
2.
Int J Mol Sci ; 23(12)2022 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-35743178

RESUMEN

Regulation of food intake is associated with nutrient-sensing systems and the expression of appetite neuropeptides. Nutrient-sensing systems generate the capacity to sense nutrient availability to maintain energy and metabolism homeostasis. Appetite neuropeptides are prominent factors that are essential for regulating the appetite to adapt energy status. However, the link between the expression of appetite neuropeptides and nutrient-sensing systems remains debatable in carnivorous fish. Here, with intracerebroventricular (ICV) administration of six essential amino acids (lysine, methionine, tryptophan, arginine, phenylalanine, or threonine) performed in mandarin fish (Siniperca chuatsi), we found that lysine and methionine are the feeding-stimulating amino acids other than the reported valine, and found a key appetite neuropeptide, neuropeptide Y (NPY), mainly contributes to the regulatory role of the essential amino acids on food intake. With the brain cells of mandarin fish cultured in essential amino acid deleted medium (lysine, methionine, histidine, valine, or leucine), we showed that only lysine deprivation activated the general control nonderepressible 2 (GCN2) signaling pathway, elevated α subunit of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation, increased activating transcription factor 4 (ATF4) protein expression, and finally induced transcription of npy. Furthermore, pharmacological inhibition of GCN2 and eIF2α phosphorylation signaling by GCN2iB or ISRIB, effectively blocked the transcriptional induction of npy in lysine deprivation. Overall, these findings could provide a better understanding of the GCN2 signaling pathway involved in food intake control by amino acids.


Asunto(s)
Neuropéptido Y , Neuropéptidos , Aminoácidos/metabolismo , Animales , Factor 2 Eucariótico de Iniciación/metabolismo , Peces/metabolismo , Lisina , Metionina , Neuropéptido Y/genética , Neuropéptido Y/metabolismo , Neuropéptidos/metabolismo , Transducción de Señal , Valina
3.
Nutr Metab (Lond) ; 17: 67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32818036

RESUMEN

BACKGROUND: Early nutritional programming affects a series of metabolism, growth and development in mammals. Fish also exhibit the developmental plasticity by early nutritional programming. However, little is known about the effect of early amino acid programming on growth and metabolism. METHODS: In the present study, zebrafish (Danio rerio) was used as the experimental animal to study whether early leucine stimulation can programmatically affect the mechanistic target of rapamycin (mTOR) signaling pathway, growth and metabolism in the later life, and to undercover the mechanism of epigenetic regulation. Zebrafish larvas at 3 days post hatching (dph) were raised with 1.0% leucine from 3 to 13 dph during the critical developmental stage, then back to normal water for 70 days (83 dph). RESULTS: The growth performance and crude protein content of zebrafish in the early leucine programming group were increased, and consistent with the activation of the mTOR signaling pathway and the high expression of genes involved in the metabolism of amino acid and glycolipid. Furthermore, we compared the DNA methylation profiles between the control and leucine-stimulated zebrafish, and found that the methylation levels of CG-differentially methylated regions (DMGs) and CHH-DMGs of genes involved in mTOR signaling pathway were different between the two groups. With quantitative PCR analysis, the decreased methylation levels of CG type of Growth factor receptor-bound protein 10 (Grb10), eukaryotic translation initiation factor 4E (eIF4E) and mTOR genes of mTOR signaling pathway in the leucine programming group, might contribute to the enhanced gene expression. CONCLUSIONS: The early leucine programming could improve the protein synthesis and growth, which might be attributed to the methylation of genes in mTOR pathway and the expression of genes involved in protein synthesis and glycolipid metabolism in zebrafish. These results could be beneficial for better understanding of the epigenetic regulatory mechanism of early nutritional programming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...