Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 674: 361-369, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38941930

RESUMEN

To achieve high-performance Zn-air batteries (ZABs), the development of bifunctional air electrodes capable of efficiently mediating both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) is imperative. In this study, we present an N-doped carbon hollow nanorod encapsulating a semi-coherent Co-Ni/Co6Mo6C heterojunction, tailored for reversible oxygen catalysis. This nanohybrid demonstrated an ORR half-wave potential of 0.907 V alongside an OER overpotential of η10 = 352 mV. When incorporated into ZABs, this catalyst exhibited extraordinary performance metrics, including a high-power density of 343.7 mW/cm2, a specific capacity of 681 mAh/gZn, and enhanced durability. The distinctive electric field within the heterojunction facilitated electron transfer across the semi-coherent interface during reversible oxygen electrocatalysis, enhancing the adsorption and release of active intermediates. Thus, this heightened ORR-OER catalytic efficiency culminated in superior ZABs performance. Our findings afford a pivotal design paradigm for the advancement of productive bifunctional catalysts within the field of energy conversion technologies.

2.
Nanomaterials (Basel) ; 14(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786783

RESUMEN

Nowadays, magnetic materials are also drawing considerable attention in the development of innovative energy converters such as triboelectric nanogenerators (TENGs), where the introduction of magnetic materials at the triboelectric interface not only significantly enhances the energy harvesting efficiency but also promotes TENG entry into the era of intelligence and multifunction. In this review, we begin from the basic operating principle of TENGs and then summarize the recent progress in applications of magnetic materials in the design of TENG magnetic materials by categorizing them into soft ferrites and amorphous and nanocrystalline alloys. While highlighting key role of magnetic materials in and future opportunities for improving their performance in energy conversion, we also discuss the most promising choices available today and describe emerging approaches to create even better magnetic TENGs and TENG-based sensors as far as intelligence and multifunctionality are concerned. In addition, the paper also discusses the integration of magnetic TENGs as a power source for third-party sensors and briefly explains the self-powered applications in a wide range of related fields. Finally, the paper discusses the challenges and prospects of magnetic TENGs.

3.
Polymers (Basel) ; 16(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38794497

RESUMEN

In advancing the transition of the energy sector toward heightened sustainability and environmental friendliness, biopolymers have emerged as key elements in the construction of triboelectric nanogenerators (TENGs) due to their renewable sources and excellent biodegradability. The development of these TENG devices is of significant importance to the next generation of renewable and sustainable energy technologies based on carbon-neutral materials. This paper introduces the working principles, material sources, and wide-ranging applications of biopolymer-based triboelectric nanogenerators (BP-TENGs). It focuses on the various categories of biopolymers, ranging from natural sources to microbial and chemical synthesis, showcasing their significant potential in enhancing TENG performance and expanding their application scope, while emphasizing their notable advantages in biocompatibility and environmental sustainability. To gain deeper insights into future trends, we discuss the practical applications of BP-TENG in different fields, categorizing them into energy harvesting, healthcare, and environmental monitoring. Finally, the paper reveals the shortcomings, challenges, and possible solutions of BP-TENG, aiming to promote the advancement and application of biopolymer-based TENG technology. We hope this review will inspire the further development of BP-TENG towards more efficient energy conversion and broader applications.

4.
Mater Horiz ; 10(12): 5969-5982, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37885433

RESUMEN

Simultaneously optimizing the d-band center of the catalyst and the mass/charge transport processes during the oxygen catalytic reaction is an essential but arduous task in the pursuit of creating effective and long-lasting bifunctional oxygen catalysts. In this study, a Fe-Co/Mo2C@N-doped carbon macroporous nanoframe was successfully synthesized via a facile "conformal coating and coordination capture" pyrolysis strategy. As expected, the resulting heterogeneous electrocatalyst exhibited excellent reversible oxygen electrocatalytic performance in an alkaline medium, as demonstrated by the small potential gap of 0.635 V between the operating potential of 1.507 V at 10 mA cm-2 for the oxygen evolution reaction and the half-wave potential of 0.872 V towards the oxygen reduction reaction. Additionally, the developed Zn-air battery employing the macroporous nanoframe heterostructure displayed an impressive peak power density of 218 mW cm-2, a noteworthy specific capacity of 694 mA h gZn-1, and remarkable charging/discharging cycle durability. Theoretical calculations confirmed that the built-in electric field between the Fe-Co alloy and Mo2C semiconductor could induce advantageous charge transport and redistribution at the heterointerface, contributing to the optimization of the d-band center of the nanohybrid and ultimately leading to a reduction in the reaction energy barrier during catalytic processes. The exquisite macroporous nanoframe facilitated the rapid transport of ions and charges, as well as the smooth access of oxygen to the internal active site. Thus, the presented unique electronic structure regulation and macroporous structure design show promising potential for the development of robust bifunctional oxygen electrodes.

5.
J Colloid Interface Sci ; 650(Pt B): 1350-1360, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37480650

RESUMEN

The advancement of bifunctional oxygen catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is imperative yet challenging for the optimization of Zn-air batteries. In this study, we reported the successful incorporation of a novel Mott-Schottky catalytic site within a MnO-FeCo heterojunction into an N-doping carbon nanobox, taking into consideration the effects of the intrinsic electric field and hollow/porous support carriers for electrocatalyst design. As expected, the resulting heterogeneous catalyst exhibited an encouraging half-wave potential of 0.88 V and an impressive limiting-current density of 5.62 mA/cm2 for the ORR, as well as a minimal overpotential of 271 mV at 10 mA/cm2 for the OER, both in alkaline conditions. Furthermore, the Zn-air battery constructed with the heterojunction nanobox product displayed a decent potential gap of 0.621 V, an outstanding power density of 253 mW/cm2, a considerable specific capacity of 761 mAh/gZn, and exceptional stability, with up to 336 h of cycling charging and discharging operation. Consequently, this method of modulating the catalyst's surface charge distribution through an internal electric field at the interface and facilitating mass transport offers a novel avenue for the development of robust bifunctional oxygen catalysts.

6.
Biosensors (Basel) ; 13(6)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366969

RESUMEN

Triboelectric nanogenerators (TENGs) have revolutionized energy harvesting and active sensing, holding tremendous potential in personalized healthcare, sustainable diagnoses, and green energy applications. In these scenarios, conductive polymers play a vital role in enhancing the performance of both TENG and TENG-based biosensors, enabling the development of flexible, wearable, and highly sensitive diagnostic devices. This review summarizes the impact of conductive polymers on TENG-based sensors, focusing on their contributions to triboelectric properties, sensitivity, detection limits, and wearability. We discuss various strategies for incorporating conductive polymers into TENG-based biosensors, promoting the creation of innovative and customizable devices tailored for specific healthcare applications. Additionally, we consider the potential of integrating TENG-based sensors with energy storage devices, signal conditioning circuits, and wireless communication modules, ultimately leading to the development of advanced, self-powered diagnostic systems. Finally, we outline the challenges and future directions in developing TENGs that integrate conducting polymers for personalized healthcare, emphasizing the need to improve biocompatibility, stability, and device integration for practical applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Comunicación , Conductividad Eléctrica , Polímeros
7.
Sensors (Basel) ; 23(9)2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37177395

RESUMEN

Triboelectric nanogenerators (TENGs) have garnered considerable interest as a promising technology for energy harvesting and stimulus sensing. While TENGs facilitate the generation of electricity from micro-motions, the modular design of TENG-based modular sensing systems (TMSs) also offers significant potential for powering biosensors and other medical devices, thus reducing dependence on external power sources and enabling biological processes to be monitored in real time. Moreover, TENGs can be customised and personalized to address individual patient needs while ensuring biocompatibility and safety, ultimately enhancing the efficiency and security of diagnosis and treatment. In this review, we concentrate on recent advancements in the modular design of TMSs for clinical applications with an emphasis on their potential for personalised real-time diagnosis. We also examine the design and fabrication of TMSs, their sensitivity and specificity, and their capabilities of detecting biomarkers for disease diagnosis and monitoring. Furthermore, we investigate the application of TENGs to energy harvesting and real-time monitoring in wearable and implantable medical devices, underscore the promising prospects of personalised and modular TMSs in advancing real-time diagnosis for clinical applications, and offer insights into the future direction of this burgeoning field.


Asunto(s)
Suministros de Energía Eléctrica , Electricidad , Humanos , Movimiento (Física) , Tecnología
8.
Biosensors (Basel) ; 13(1)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36671948

RESUMEN

Piezoelectric nanogenerators (PENGs) not only are able to harvest mechanical energy from the ambient environment or body and convert mechanical signals into electricity but can also inform us about pathophysiological changes and communicate this information using electrical signals, thus acting as medical sensors to provide personalized medical solutions to patients. In this review, we aim to present the latest advances in PENG-based non-invasive sensors for clinical diagnosis and medical treatment. While we begin with the basic principles of PENGs and their applications in energy harvesting, this review focuses on the medical sensing applications of PENGs, including detection mechanisms, material selection, and adaptive design, which are oriented toward disease diagnosis. Considering the non-invasive in vitro application scenario, discussions about the individualized designs that are intended to balance a high performance, durability, comfortability, and skin-friendliness are mainly divided into two types: mechanical sensors and biosensors, according to the key role of piezoelectric effects in disease diagnosis. The shortcomings, challenges, and possible corresponding solutions of PENG-based medical sensing devices are also highlighted, promoting the development of robust, reliable, scalable, and cost-effective medical systems that are helpful for the public.


Asunto(s)
Electricidad , Proyectos de Investigación , Humanos , Piel
9.
Molecules ; 27(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36144575

RESUMEN

Liver-related disease caused by alcohol is a frequent disorder of the hepatic tract. Heavy consumption of alcohol in a short period causes oxidative damage to the liver. Sea cucumber is abundant in nutrients and its various extracts have been studied for antioxidant properties. One peptide was isolated and identified from Apostichopus japonicus in our recent study. We investigated the benefits of the peptide in a model of acute ethanol-induced male C57BL/6J mice. Dietary intake of the peptide could attenuate hepatomegaly, hepatitis and the accumulation of lipid droplets, and increase antioxidant enzyme activities in mice with acute alcoholic liver injury. The results indicated that a 20 mg/kg peptide supplement could activate the Nrf2/HO-1 pathway and block the nuclear translocation of NF-κB to alleviate oxidative stress and inflammation. In addition, the preventive effects of peptide supplementation may be related to autophagy. This study suggests that dietary supplementation with a sea cucumber-derived peptide is one of the potential candidates to alleviate acute alcoholic liver injury.


Asunto(s)
Hepatopatías Alcohólicas , Stichopus , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Etanol/metabolismo , Hígado , Hepatopatías Alcohólicas/tratamiento farmacológico , Hepatopatías Alcohólicas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/metabolismo , FN-kappa B/metabolismo , Estrés Oxidativo , Péptidos/metabolismo , Péptidos/farmacología
10.
Dalton Trans ; 51(30): 11316-11324, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35833651

RESUMEN

Lead halide perovskite CsPbBr3 quantum dots (QDs) possess several desirable features which enable them to be promising candidates for photocatalysis. However, the instability caused by their inherent liquid-like ionic properties hampers their further development. Herein, this work employs the surficial molecular modification strategy and a multi-dimensional structure design to ease the instability issue. The additive 2-phenylethanamine bromide (PEABr) can serve as a ligand to compensate for stripping the amine ligands and passivate the surficial bromide vacancy defects of CsPbBr3 QDs in photocatalysis. In addition, PEABr acts as a reactant to form 2D and quasi-2D perovskite nanosheets. The addition of a small amount of these nanosheets into QDs can enhance their general stability due to their unique layered structures. Moreover, PEABr can trigger the phase transition of cubic CsPbBr3 into tetragonal CsPb2Br5. The newly formed Z-scheme homologous heterojunctions further improve the catalytic performance. Simulated photocatalytic dynamics reveals that our multi-dimensional structure favors decreasing the reaction barrier energy and then facilitating the photocatalytic reaction. Therefore, the electron consumption rate of our multi-dimensional perovskites doubles that of pristine CsPbBr3 QDs and also has superior long-term stability.

11.
Inorg Chem ; 61(16): 6083-6093, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35404597

RESUMEN

Selective removal of carbonyl sulfide (COS) and hydrogen sulfide (H2S) is the key step for natural gas desulfurization due to the highly toxic and corrosive features of these gaseous sulfides, and efficient and stable desulfurizers are urgently needed in the industry. Herein, we report a class of nitrogen-functionalized, hierarchically lamellar carbon frameworks (N-HLCF-xs), which are obtained from the structural transformation of Zn zeolitic imidazolate frameworks via controllable carbonization. The N-HLCF-xs possess the desirable characteristics of large Brunauer-Emmett-Teller surface areas (645-923 m2/g), combined primary three-dimensional microporosity and secondary two-dimensional lamellar microstructure, and high density of nitrogen base sites with enhanced pyridine ratio (17.52 wt %, 59.91%). The anchored nitrogen base sites in N-HLCF-xs show improved accessibility, which boosts their interaction with acidic COS and H2S. As expected, N-HLCF-xs can be employed as multifunctional and efficient desulfurizers for selective removal of COS and H2S from natural gas. COS was first transformed into H2S via catalytic hydrolysis, and the produced H2S was then captured and separated and catalyzed oxidation into elemental sulfur. The above continuous processes can be achieved with solo N-HLCF-xs, giving extremely high efficiencies and reusability. Their integrated desulfurization performance was better than many desulfurizers used in the area, such as activated carbon, ß zeolite, MIL-101(Fe), K2CO3/γ-Al2O3, and FeOx/TiO2.

12.
Microbiol Res ; 254: 126897, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34710835

RESUMEN

Phyllosphere bacteria are an important component of environmental microbial communities and are closely related to plant health and ecosystem stability. However, the relationships between the inhabitation and assembly of phyllosphere bacteria and leaf microtopography are still obscure. In this study, the phyllosphere bacterial communities and leaf microtopographic features (vein density, stomatal length, and density) of eleven tree species were fully examined. Both the absolute abundance and diversity of phyllosphere bacterial communities were significantly different among the tree species, and leaf vein density dominated the variation. TITAN analysis showed that leaf vein density also played more important roles in regulating the relative abundance of bacteria than stomatal features, and 6 phyla and 62 genera of phyllosphere bacteria showed significant positive responses to leaf vein density. Moreover, LEfSe analysis showed that the leaves with higher vein density had more bacterial biomarkers. Leaf vein density also changed the co-occurrence pattern of phyllosphere bacteria, and the co-occurrence network demonstrated more negative correlations and more nodes on the leaves with larger leaf vein density, indicating that higher densities of leaf veins improved the stability of the phyllosphere bacterial community. Phylogenetic analysis showed that deterministic processes (especially homogeneous selection) dominated the assembly process of phyllosphere bacterial communities. The leaf vein density increased the degree of bacterial clustering at the phylogenetic level. Therefore, the inhabitation and assembly of the phyllosphere bacterial community are related to leaf microtopography, which provides deeper insight into the interaction between plants and bacteria.


Asunto(s)
Bacterias , Ecosistema , Microbiota , Hojas de la Planta , Árboles , Bacterias/clasificación , Bacterias/genética , Biodiversidad , Filogenia , Hojas de la Planta/microbiología , Árboles/microbiología
13.
Sci Total Environ ; 756: 143839, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33298322

RESUMEN

Understanding the succession patterns of microbial community along root growth provides deep insights into interaction between fine roots and microbes. In the study, we investigated this issue using fine roots from poplar trees and grouped these fine roots into three growth stages: newborn white roots (WR), mature yellow roots (YR) and aging brown roots (BR). Root surface traits were observed under a scanning electron microscopy (SEM). Adhered soils on roots of the three growth stages were grouped into the three soil compartments, correspondingly. The 16S rRNA and ITS1 region were sequenced for bacteria and fungi inhabiting rhizosphere soils, respectively. Phospholipid fatty acid (PLFA) technology was employed to examine the biomass of bacterial and fungal communities. The anatomical traits of fine roots show apparent differences among the WR, YR and BR. Both bacteria and fungi have 25 dominant genera with a relative abundance over 1%, of which, four genera of the bacteria (Bacillus, Burkholderia, Ralstonia and Dyella) differ in abundance among the WR, YR and BR soil compartments and four genera of the fungi (Fusarium, Chaetomium, Penicillium and Scleroderma) differ in abundance among these soil compartments. The operational taxonomic units (OTUs) showed the highest richness in the WR soil compartment for bacteria and in the YR soil compartment for fungi, indicating a different succession pattern between the bacterial and fungal communities. Furthermore, the biomass of bacterial community is larger than the fungal community according to PLFAs, and both decreased along fine root growth. The total carbon (TC) in the soil increases along root growth while the dissolved organic carbon (DOC) decreases. Redundancy analysis (RDA) shows a close correlation between twelve dominant bacteria genera and the total organic carbon (TOC), the readily oxidizable organic carbon (ROC) and DOC and ten dominant fungi genera with the TOC and ROC. In conclusion, our results indicate that fine roots growth has shaped the composition and structure of root associated bacterial and fungal communities.


Asunto(s)
Micobioma , Rizosfera , Bacterias/genética , Hongos/genética , Humanos , Recién Nacido , Raíces de Plantas , ARN Ribosómico 16S , Suelo , Microbiología del Suelo
14.
Colloids Surf B Biointerfaces ; 184: 110492, 2019 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-31522026

RESUMEN

The electrochemical properties of CoCrMo alloy immersed in different artificial saliva with or without Ca2+ and albumin were studied by open circuit potential (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PP), and meanwhile the microstructures features, phase identification and chemical composition of the alloy were analyzed by SEM, EDS, XRD and RA-IR to further understand the electrochemical behavior of the alloy. The results indicated that the self-passivation behavior of the alloy occurred universally and was obviously distinct with each other in different acidic artificial saliva. No phase transformation was observed and the oxide layer and corrosion products exhibited amorphous nature. There was an obvious complexation of the adsorbed albumin with the alloy, and the adsorption capacity of albumin increased with the prolongation of immersion time. The adsorbed albumin presenting black stripped spots had a certain inhibition to the formation of passivation film, and Ca2+ in saliva promoted the further adsorption of albumin as an intermediate bridge, going against the improvement of the corrosion resistance of passivation film/alloy system. In addition, the passivation state of the alloy surface was changed by different methods to investigate the adsorption behavior of albumin and its influence on the further passivation behavior in depth. Hitherto, we tried to propose a model to explain the dynamic adsorption process of albumin and its influencing mechanism on the growth behavior of passivation film.


Asunto(s)
Albúminas/química , Aleaciones de Cromo/química , Cobalto/química , Aleaciones Dentales/química , Molibdeno/química , Saliva Artificial/química , Adsorción , Espectroscopía Dieléctrica , Electroquímica/métodos , Concentración de Iones de Hidrógeno , Ensayo de Materiales/métodos , Microscopía Electrónica de Rastreo , Propiedades de Superficie , Difracción de Rayos X
15.
J Biomech Eng ; 128(6): 925-33, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17154695

RESUMEN

The objective of this study was to define the constitutive response of brainstem undergoing finite shear deformation. Brainstem was characterized as a transversely isotropic viscoelastic material and the material model was formulated for numerical implementation. Model parameters were fit to shear data obtained in porcine brainstem specimens undergoing finite shear deformation in three directions: parallel, perpendicular, and cross sectional to axonal fiber orientation and determined using a combined approach of finite element analysis (FEA) and a genetic algorithm (GA) optimizing method. The average initial shear modulus of brainstem matrix of 4-week old pigs was 12.7 Pa, and therefore the brainstem offers little resistance to large shear deformations in the parallel or perpendicular directions, due to the dominant contribution of the matrix in these directions. The fiber reinforcement stiffness was 121.2 Pa, indicating that brainstem is anisotropic and that axonal fibers have an important role in the cross-sectional direction. The first two leading relative shear relaxation moduli were 0.8973 and 0.0741, respectively, with corresponding characteristic times of 0.0047 and 1.4538 s, respectively, implying rapid relaxation of shear stresses. The developed material model and parameter estimation technique are likely to find broad applications in neural and orthopaedic tissues.


Asunto(s)
Tronco Encefálico/fisiología , Modelos Neurológicos , Estimulación Física/métodos , Animales , Anisotropía , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Técnicas In Vitro , Resistencia al Corte , Estrés Mecánico , Porcinos , Viscosidad
16.
Dev Neurosci ; 28(4-5): 388-95, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16943662

RESUMEN

The objective of this study was to utilize tissue deformation thresholds associated with acute axonal injury in the immature brain to predict the duration of unconsciousness. Ten anesthetized 3- to 5-day-old piglets were subjected to nonimpact axial rotations (110-260 rad/s) producing graded injury, with periods of unconsciousness from 0 to 80 min. Coronal sections of the perfusion-fixed brain were immunostained with neurofilament antibody (NF-68) and examined microscopically to identify regions of swollen axons and terminal retraction balls. Each experiment was simulated with a finite element computational model of the piglet brain and the recorded head velocity traces to estimate the local tissue deformation (strain), the strain rate and their product. Using thresholds associated with 50, 80 and 90% probability of axonal injury, white matter regions experiencing suprathreshold responses were determined and expressed as a fraction of the total white matter volume. These volume fractions were then correlated with the duration of unconsciousness, assuming a linear relationship. The thresholds for 80 and 90% probability of predicting injury were found to correlate better with injury severity than those for 50%, and the product of strain and strain rate was the best predictor of injury severity (p=0.02). Predictive capacity of the linear relationship was confirmed with additional (n=13) animal experiments. We conclude that the suprathreshold injured volume can provide a satisfactory prediction of injury severity in the immature brain.


Asunto(s)
Envejecimiento/fisiología , Lesiones Encefálicas/fisiopatología , Encéfalo/patología , Encéfalo/fisiopatología , Lesión Axonal Difusa/fisiopatología , Inconsciencia/fisiopatología , Animales , Encéfalo/crecimiento & desarrollo , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico , Niño , Lesión Axonal Difusa/diagnóstico , Lesión Axonal Difusa/metabolismo , Modelos Animales de Enfermedad , Humanos , Modelos Lineales , Fibras Nerviosas Mielínicas/metabolismo , Fibras Nerviosas Mielínicas/patología , Proteínas de Neurofilamentos/análisis , Proteínas de Neurofilamentos/metabolismo , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Estadística como Asunto , Estrés Mecánico , Sus scrofa , Inconsciencia/diagnóstico , Inconsciencia/etiología , Degeneración Walleriana/diagnóstico , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología
17.
Stapp Car Crash J ; 48: 227-37, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17230268

RESUMEN

Finite element models are increasingly important in understanding head injury mechanisms and designing new injury prevention equipment. Although boundary conditions strongly influence model responses, only limited quantitative data are available. While experimental studies revealed some motion between brain and skull, little data exists regarding the base of the skull. Using magnetic resonance images (MRI) of the caudal brain regions, we measured in vivo, quasi-static angular displacement of the cerebellum (CB) and brainstem (BS) relative to skull, and axial displacement of BS at the foramen magnum in supine human subjects (N=5). Images were obtained in flexion (7 degrees - 54 degrees ) and neutral postures using SPAMM tagging technique (N=47 pairs). Rigid body skull rotation angle from neutral posture (theta, degrees) was determined by extracting the edge feature points of the skull, and rotating and displacing the coordinates in one image until they matched those in the other. Tissue rotation was obtained by comparing tag lines in image pairs before and after flexion, and the motion of BS and CB were expressed relative to skull rotation and displacement. During flexion, the CB rotated in the flexion direction, exceeding the skull rotation, but relative BS rotations were negligible. Meanwhile, the BS moved caudally toward the foramen magnum. With a flexion angle of 54 degrees , the 95% confidence interval for the relative CB rotation was 2.7 degrees - 4.3 degrees , and 0.8 - 1.6mm for the relative BS axial displacement. Albeit quasi-static, this study provides important data that can be implemented to create more life-like boundary conditions in human finite element models.

18.
J Neurotrauma ; 20(11): 1163-77, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14651804

RESUMEN

Clinical and biomechanical evidence indicates that mechanisms and pathology of head injury in infants and young children may be different from those in adults. Biomechanical computer-based modeling, which can be used to provide insight into the thresholds for traumatic tissue injury, requires data on material properties of the brain, skull, and sutures that are specific for the pediatric population. In this study, brain material properties were determined for rats at postnatal days (PND) 13, 17, 43, and 90, and skull/suture composite (braincase) properties were determined at PND 13, 17, and 43. Controlled 1 mm indentation of a force probe into the brain was used to measure naive, non-preconditioned (NPC) and preconditioned (PC) instantaneous (G(i)) and long-term (G( infinity )) shear moduli of brain tissue both in situ and in vitro. Brains at 13 and 17 PND exhibited statistically indistinguishable shear moduli, as did brains at 43 and 90 PND. However, the immature (average of 13 and 17 PND) rat brain (G(i) = 3336 Pa NPC, 1754 Pa PC; G( infinity )= 786 Pa NPC, 626 Pa PC) was significantly stiffer (p < 0.05) than the mature (average of 43 and 90 PND) brains (G(i) = 1721 Pa NPC, 1232 Pa PC; G( infinity ) = 508 Pa NPC, 398 Pa PC). A "reverse engineering" finite element model approach, which simulated the indentation of the force probe into the intact braincase, was used to estimate the effective elastic moduli of the braincase. Although the skull of older rats was significantly thicker than that of the younger rats, there was no significant age-dependent change in the effective elastic modulus of the braincase (average value = 6.3 MPa). Thus, the increase in structural rigidity of the braincase with age (up to 43 PND) was due to an increase in skull thickness rather than stiffening of the tissue. These observations of a stiffer brain and more compliant braincase in the immature rat compared with the adult rat will aid in the development of age-specific experimental models and in computational head injury simulations. Specifically, these results will assist in the selection of forces to induce comparable mechanical stresses, strains and consequent injury profiles in brain tissues of immature and adult animals.


Asunto(s)
Encéfalo/anatomía & histología , Cráneo/anatomía & histología , Factores de Edad , Animales , Fenómenos Biomecánicos , Encéfalo/crecimiento & desarrollo , Suturas Craneales/anatomía & histología , Suturas Craneales/crecimiento & desarrollo , Traumatismos Craneocerebrales/patología , Elasticidad , Modelos Biológicos , Ratas , Cráneo/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...