Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 624
Filtrar
1.
SSM Popul Health ; 26: 101672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38708407

RESUMEN

Background: Maternal education is one of key factors affecting nurturing environment which significantly impacts children's height levels throughout their developmental stages. However, the influence of maternal education on children's height is less studied. This study aims to investigate the dynamic influence of maternal education on children's height among Chinese children aged 0-18 years. Methods: Children undergoing health examinations from January 2021 to September 2023 were included in this study. Clinical information including height, weight, maternal pregnancy history, blood specimens for bone metabolism-related indicators and maternal education level was collected. Children's height was categorized into 14 groups based on age and gender percentiles, following WHO 2006 growth standards. One-way analysis of variance (ANOVA), linear regression, chi-square test and Fisher's exact test were applied for data analysis. Results: A total of 6269 samples were collected, including 3654 males and 2615 females, with an average age of 8.38 (3.97) for males and 7.89 (3.55) for females. Significant correlations between maternal education level, birth weight, birth order, weight percentile, vitamin D, serum phosphorus, alkaline phosphatase levels, and children's height were identified. Birth weight's influence on height varied across age groups. Compared with normal birth weight children, low birth weight children exhibited catch-up growth within the first 6 years and a subsequent gradual widening of the height gap from 6 to 18 years old. Remarkably, the impact of maternal education on height became more pronounced among children above 3-6 years old, which can mitigate the effect of low birth weight on height. Conclusion: We found that weight percentile, birth weight, birth order, bone marker levels, and maternal education level have significant effect on height. Maternal education attenuates the impact of low birth weight on height. The findings indicated that maternal education plays a consistent and critical role in promoting robust and healthy growth.

2.
Biochem Biophys Res Commun ; 716: 150038, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704891

RESUMEN

Hyperuricemia (HUA) is caused by increased synthesis and/or insufficient excretion of uric acid (UA). Long-lasting HUA may lead to a number of diseases including gout and kidney injury. Harpagoside (Harp) is a bioactive compound with potent anti-inflammatory activity from the roots of Scrophularia ningpoensis. Nevertheless, its potential effect on HUA was not reported. The anti-HUA and nephroprotective effects of Harp on HUA mice were assessed by biochemical and histological analysis. The proteins responsible for UA production and transportation were investigated to figure out its anti-HUA mechanism, while proteins related to NF-κB/NLRP3 pathway were evaluated to reveal its nephroprotective mechanism. The safety was evaluated by testing its effect on body weight and organ coefficients. The results showed that Harp significantly reduced the SUA level and protected the kidney against HUA-induced injury but had no negative effect on safety. Mechanistically, Harp significantly reduced UA production by acting as inhibitors of xanthine oxidase (XOD) and adenosine deaminase (ADA) and decreased UA excretion by acting as activators of ABCG2, OAT1 and inhibitors of GLUT9 and URAT1. Moreover, Harp markedly reduced infiltration of inflammatory cells and down-regulated expressions of TNF-α, NF-κB, NLRP3 and IL-1ß in the kidney. Harp was a promising anti-HUA agent.


Asunto(s)
Glicósidos , Hiperuricemia , Proteína con Dominio Pirina 3 de la Familia NLR , Piranos , Ácido Úrico , Animales , Hiperuricemia/tratamiento farmacológico , Hiperuricemia/metabolismo , Ácido Úrico/sangre , Masculino , Glicósidos/farmacología , Glicósidos/uso terapéutico , Piranos/farmacología , Piranos/uso terapéutico , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , FN-kappa B/metabolismo , Ratones Endogámicos C57BL
3.
Cell ; 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38781967

RESUMEN

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.

4.
Nat Prod Res ; : 1-7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752874

RESUMEN

Two new withanolides named physaminilides L (1) and M (2), together with four known ones (3-6) were isolated from the Physalis minima L. The structures were established by analysis of the HR ESIMS, IR and NMR spectroscopic data. The absolute configurations were determined through NOESY and ECD spectra. For compounds 1-5 assayed at 20 µM and compound 6 at 10 µM, inhibition rates of hepatic fibrosis were 22.19%, 15.29%, 37.07%, 9.27%, 12.45%, and 37.03%, respectively.

5.
J Sports Sci ; : 1-12, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38734986

RESUMEN

Unanticipated trunk perturbation is commonly observed when anterior cruciate ligament (ACL) injuries occur during direction-changing manoeuvres. This study aimed to quantify the effect of mid-flight medial-lateral external trunk perturbation directions/locations on ACL loading variables during sidestep cuttings. Thirty-two recreational athletes performed sidestep cuttings under combinations of three perturbation directions (no-perturbation, ipsilateral-perturbation, and contralateral-perturbation relative to the cutting leg) and two perturbation locations (upper-trunk versus lower-trunk). The pushing perturbation was created by customised devices releasing a slam ball to contact participants near maximum jump height prior to cutting. Perturbation generally resulted in greater peak vertical ground reaction force and slower cutting velocity. Upper-trunk contralateral perturbation showed the greatest lateral trunk bending away from the travel direction, greatest peak knee flexion and abduction angles, and greatest peak internal knee adduction moments compared to other conditions. Such increased ACL loading variables were likely due to the increased lateral trunk bending and whole-body horizontal velocity away from the cutting direction caused by the contralateral perturbation act at the upper trunk. The findings may help understand the mechanisms of indirect contact ACL injuries and develop effective cutting techniques for ACL injury prevention.

6.
J Microbiol Biotechnol ; 34(6): 1-8, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38783719

RESUMEN

The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. ß-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.

7.
Cancer Res ; 84(9): 1460-1474, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38593213

RESUMEN

Patients with triple-negative breast cancer (TNBC) have a poor prognosis due to the lack of effective molecular targets for therapeutic intervention. Here we found that the long noncoding RNA (lncRNA) MILIP supports TNBC cell survival, proliferation, and tumorigenicity by complexing with transfer RNAs (tRNA) to promote protein production, thus representing a potential therapeutic target in TNBC. MILIP was expressed at high levels in TNBC cells that commonly harbor loss-of-function mutations of the tumor suppressor p53, and MILIP silencing suppressed TNBC cell viability and xenograft growth, indicating that MILIP functions distinctively in TNBC beyond its established role in repressing p53 in other types of cancers. Mechanistic investigations revealed that MILIP interacted with eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) and formed an RNA-RNA duplex with the type II tRNAs tRNALeu and tRNASer through their variable loops, which facilitated the binding of eEF1α1 to these tRNAs. Disrupting the interaction between MILIP and eEF1α1 or tRNAs diminished protein synthesis and cell viability. Targeting MILIP inhibited TNBC growth and cooperated with the clinically available protein synthesis inhibitor omacetaxine mepesuccinate in vivo. Collectively, these results identify MILIP as an RNA translation elongation factor that promotes protein production in TNBC cells and reveal the therapeutic potential of targeting MILIP, alone and in combination with other types of protein synthesis inhibitors, for TNBC treatment. SIGNIFICANCE: LncRNA MILIP plays a key role in supporting protein production in TNBC by forming complexes with tRNAs and eEF1α1, which confers sensitivity to combined MILIP targeting and protein synthesis inhibitors.


Asunto(s)
Proliferación Celular , Factor 1 de Elongación Peptídica , Biosíntesis de Proteínas , ARN Largo no Codificante , ARN de Transferencia , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/metabolismo , Humanos , Femenino , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Animales , Ratones , Factor 1 de Elongación Peptídica/metabolismo , Factor 1 de Elongación Peptídica/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Regulación Neoplásica de la Expresión Génica
8.
iScience ; 27(4): 109511, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38571759

RESUMEN

Ferroptosis and ferritinophagy play critical roles in various disease contexts. Herein, we observed that ferroptosis and ferritinophagy were induced both in the brains of mice with diabetes mellitus (DM) and neuronal cells after high glucose (HG) treatment, as evidenced by decreases in GPX4, SLC7A11, and ferritin levels, but increases in NCOA4 levels. Interestingly, melatonin administration ameliorated neuronal damage by inhibiting ferroptosis and ferritinophagy both in vivo and in vitro. At the molecular level, we found that not only the ferroptosis inducer p53 but also the ferritinophagy mediator NCOA4 was the potential target of miR-214-3p, which was downregulated by DM status or HG insult, but was increased after melatonin treatment. However, the inhibitory effects of melatonin on ferroptosis and ferritinophagy were blocked by miR-214-3p downregulation. These findings suggest that melatonin is a potential drug for improving diabetic brain damage by inhibiting p53-mediated ferroptosis and NCOA4-mediated ferritinophagy through regulating miR-214-3p in neurons.

9.
Front Nutr ; 11: 1359229, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606016

RESUMEN

Background: High intake of ultra-processed food (UPF) has been associated with increased risk of chronic kidney disease(CKD), but the results remain inconsistent. We therefore performed this systematic review and dose­response meta-analysis of observational studies that shed light on the association between UPF consumption and the risk of CKD. Methods: A systematic literature search of PubMed, Embase, Web of Science, Scopus and China National Knowledge Infrastructure (CNKI) databases was carried out to find the eligible articles published up to October 31, 2023. Random-effects or fixed-effects models were used to pool the relative risks(RRs) and their 95% confidence intervals (CIs).The potential sources of heterogeneity across studies were examined using the Cochran's Q test and I-square(I2). Publication bias was examined using the visual inspection of asymmetry in funnel plots and quantified by Begg's and Egger's tests. Results: Eight studies (six cohort and two cross-sectional studies) exploring the association between UPF consumption and risk of CKD, were included in the final analysis. The pooled analyses revealed that high consumption of UPF was associated with an increased risk of CKD (RR = 1.25; 95%CI: 1.09­1.42, p < 0.0001). Moreover, a 10% increase of UPF consumption was associated with a 7% higher risk of CKD (RR = 1.07; 95%CI: 1.04­1.10, p < 0.001). Dose­response analysis of all included studies showed a linear association between UPF consumption and the risk of CKD (RR = 1.02; 95%CI:0.99­1.05, Pdose­response = 0.178, Pnonlinearity = 0.843). Conclusion: Our findings indicate that high consumption of UPF is significantly associated with an increased risk of CKD. Future research with prospective design is required to confirm this positive association.Systematic review registration: https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023478483, PROSPERO identifier CRD42023478483.

10.
Adv Healthc Mater ; : e2400846, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659315

RESUMEN

J-aggregate is a promising strategy to enhance second near-infrared window (NIR-II) emission, while the controlled synthesis of J-aggregated NIR-II dyes is a huge challenge because of the lack of molecular design principle. Herein, bulk spiro[fluorene-9,9'-xanthene] functionalized benzobisthiadiazole-based NIR-II dyes (named BSFX-BBT and OSFX-BBT) are synthesized with different alkyl chains. The weak repulsion interaction between the donor and acceptor units and the S…N secondary interactions make the dyes to adopt a co-planar molecular conformation and display a peak absorption >880 nm in solution. Importantly, BSFX-BBT can form a desiring J-aggregate in the condensed state, and femtosecond transient absorption spectra reveal that the excited states of J-aggregate are the radiative states, and J-aggregate can facilitate stimulated emission. Consequently, the J-aggregated nanoparticles (NPs) display a peak emission at 1124 nm with a high relative quantum yield of 0.81%. The efficient NIR-II emission, good photothermal effect, and biocompatibility make the J-aggregated NPs demonstrate efficient antitumor efficacy via fluorescence/photoacoustic imaging-guided phototherapy. The paradigm illustrates that tuning the aggregate states of NIR-II dye via spiro-functionalized strategy is an effective approach to enhance photo-theranostic performance.

11.
Mol Ther Oncol ; 32(1): 200775, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596311

RESUMEN

Chimeric antigen receptor (CAR) T cell therapies targeting B cell-restricted antigens CD19, CD20, or CD22 can produce potent clinical responses for some B cell malignancies, but relapse remains common. Camelid single-domain antibodies (sdAbs or nanobodies) are smaller, simpler, and easier to recombine than single-chain variable fragments (scFvs) used in most CARs, but fewer sdAb-CARs have been reported. Thus, we sought to identify a therapeutically active sdAb-CAR targeting human CD22. Immunization of an adult Llama glama with CD22 protein, sdAb-cDNA library construction, and phage panning yielded >20 sdAbs with diverse epitope and binding properties. Expressing CD22-sdAb-CAR in Jurkat cells drove varying CD22-specific reactivity not correlated with antibody affinity. Changing CD28- to CD8-transmembrane design increased CAR persistence and expression in vitro. CD22-sdAb-CAR candidates showed similar CD22-dependent CAR-T expansion in vitro, although only membrane-proximal epitope targeting CD22-sdAb-CARs activated direct cytolytic killing and extended survival in a lymphoma xenograft model. Based on enhanced survival in blinded xenograft studies, a lead CD22sdCAR-T was selected, achieving comparable complete responses to a benchmark short linker m971-scFv CAR-T in high-dose experiments. Finally, immunohistochemistry and flow cytometry confirm tissue and cellular-level specificity of the lead CD22-sdAb. This presents a complete report on preclinical development of a novel CD22sdCAR therapeutic.

12.
BMC Med ; 22(1): 154, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609982

RESUMEN

BACKGROUND: Colorectal cancer (CRC) lacks established biomarkers or molecular targets for predicting or enhancing radiation response. Phosphatidylinositol-3,4,5-triphosphate-dependent Rac exchange factor 2 (PREX2) exhibits intricate implications in tumorigenesis and progression. Nevertheless, the precise role and underlying mechanisms of PREX2 in CRC radioresistance remain unclear. METHODS: RNA-seq was employed to identify differentially expressed genes between radioresistant CRC cell lines and their parental counterparts. PREX2 expression was scrutinized using Western blotting, real-time PCR, and immunohistochemistry. The radioresistant role of PREX2 was assessed through in vitro colony formation assay, apoptosis assay, comet assay, and in vivo xenograft tumor models. The mechanism of PREX2 was elucidated using RNA-seq and Western blotting. Finally, a PREX2 small-molecule inhibitor, designated PREX-in1, was utilized to enhance the efficacy of ionizing radiation (IR) therapy in CRC mouse models. RESULTS: PREX2 emerged as the most significantly upregulated gene in radioresistant CRC cells. It augmented the radioresistant capacity of CRC cells and demonstrated potential as a marker for predicting radioresistance efficacy. Mechanistically, PREX2 facilitated DNA repair by upregulating DNA-PKcs, suppressing radiation-induced immunogenic cell death, and impeding CD8+ T cell infiltration through the cGAS/STING/IFNs pathway. In vivo, the blockade of PREX2 heightened the efficacy of IR therapy. CONCLUSIONS: PREX2 assumes a pivotal role in CRC radiation resistance by inhibiting the cGAS/STING/IFNs pathway, presenting itself as a potential radioresistant biomarker and therapeutic target for effectively overcoming radioresistance in CRC.


Asunto(s)
Apoptosis , Neoplasias Colorrectales , Animales , Ratones , Humanos , Linfocitos T CD8-positivos , Modelos Animales de Enfermedad , Expresión Génica , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/radioterapia , Factores de Intercambio de Guanina Nucleótido
13.
Planta ; 259(5): 98, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38522041

RESUMEN

MAIN CONCLUSION: A stable genetic transformation system for Erigeron breviscapus was developed. We cloned the EbYUC2 gene and genetically transformed it into Arabidopsis thaliana and E. breviscapus. The leaf number, YUC2 gene expression, and the endogenous auxin content in transgenic plants were significantly increased. Erigeron breviscapus is a prescription drug for the clinical treatment of cardiovascular and cerebrovascular diseases. The rosette leaves have the highest content of the major active compound scutellarin and are an important component in the yield of E. breviscapus. However, little is known about the genes related to the leaf number and flowering time of E. breviscapus. In our previous study, we identified three candidate genes related to the leaf number and flowering of E. breviscapus by combining resequencing data and genome-wide association study (GWAS). However, their specific functions remain to be characterized. In this study, we cloned and transformed the previously identified full-length EbYUC2 gene into Arabidopsis thaliana, developed the first stable genetic transformation system for E. breviscapus, and obtained the transgenic plants overexpressing EbYUC2. Compared with wild-type plants, the transgenic plants showed a significant increase in the number of leaves, which was correlated with the increased expression of EbYUC2. Consistently, the endogenous auxin content, particularly indole-3-acetic acid, in transgenic plants was also significantly increased. These results suggest that EbYUC2 may control the leaf number by regulating auxin biosynthesis, thereby laying a foundation for revealing the molecular mechanism governing the leaf number and flowering time of E. breviscapus.


Asunto(s)
Arabidopsis , Erigeron , Erigeron/genética , Arabidopsis/genética , Estudio de Asociación del Genoma Completo , Ácidos Indolacéticos , Hojas de la Planta/genética , Plantas Modificadas Genéticamente , Transformación Genética
14.
J Phys Chem Lett ; 15(10): 2772-2780, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38437178

RESUMEN

Charge localization of memory materials plays a crucial role in the endurance and retention ability of organic nonvolatile memory, which is completely opposite from the charge delocalization of high-mobility materials. However, charge transfer of both though-space and through-bond based on molecular design principles still faces challenges. Herein, a nonplanar wide-bandgap semiconductor with Csp3-hindrance (DOCH3-DDPA-SFX) has been designed and synthesized. An effective crystallization effect of self-assembled two-dimensional nanosheets on charge trapping dynamics and kinetics is visualized by Kelvin probe force microscopy (KPFM). The trapped charges are localized completely on a single nanosheet, which has better charge trapping and retention properties than an amorphous film. Meanwhile, crystallization also greatly improves structure stability. Combining DFT theoretical calculations, the mechanisms of localization and long-term retention are discussed. The steric crystallization effects on the charge localization will guide the effective design of single-component semiconducting charge-memory materials by molecular assembly and aggregate control for high-performance organic memory.

15.
Curr Zool ; 70(1): 45-58, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38476135

RESUMEN

Group living animals form striking aggregation patterns and display synchronization, polarization, and collective intelligence. Though many collective behavioral studies have been conducted on small animals like insects and fish, research on large animals is still rare due to the limited availability of field collective data. We used drones to record videos and analyzed the decision-making and behavioral spatial patterns in orientation of Kiang (Tibetan wild ass, Equus kiang). Leadership is unevenly distributed among Kiang, with the minority initiating majority behavior-shift decisions. Decisions of individual to join are driven by imitation between group members, and are largely dependent on the number of members who have already joined. Kiang respond to the behavior and position of neighbors through different strategies. They strongly polarize when moving, therefore adopting a linear alignment. When vigilant, orientation deviation increases as they form a tighter group. They remain scattered while feeding and, in that context, adopt a side-by-side alignment. This study reveals partially-shared decision-making among Kiang, whereby copying neighbors provides the wisdom to thrive in harsh conditions. This study also suggests that animals' spatial patterns in orientation depend largely on their behavioral states in achieving synchronization.

16.
Nat Prod Res ; : 1-7, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38520719

RESUMEN

Persicaria capitata was a frequently used Hmong medicinal flora in China. In this study, one new phenolic compound, capitaone A (1) together with 20 known ones, were isolated from the whole herb of P. capitata. Among them, 7 components (4, 9-11, 15-16, 20-21) were discovered from P. capitata for the first time. Their chemical structures were elucidated on the basis of extensive NMR and MS spectrum. Furthermore, three compounds (15, 20, 21) displayed remarkable cytotoxic activities against two human cancer cell lines (A549 and HepG2).

17.
Conserv Biol ; : e14253, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38516741

RESUMEN

Because global anthropogenic activities cause vast biodiversity loss, human dimensions research is essential to forming management plans applicable to biodiversity conservation outside wilderness areas. Engaging public participation is crucial in this context to achieve social and environmental benefits. However, knowledge gaps remain in understanding how a balance between conservation and public demands can be reached and how complicated sociocultural contexts in the Anthropocene can be incorporated in conservation planning. We examined China's nationwide conflict between free-ranging cats (owned cats that are allowed to go outdoors or homeless cats living outdoors) and wildlife to examine how a consensus between compassion and biodiversity conservation can help in decision-making. We surveyed a random sample of people in China online. Over 9000 questionnaires were completed (44.2% response). In aggregate, respondents reported approximately 29 million free-ranging owned cats and that over 5 million domestic cats per year become feral in mainland China. Respondents who were cat owners, female, and religious were more likely to deny the negative impacts of cats on wildlife and ongoing management strategies and more supportive of stray cat shelters, adoption, and community-based fund raising than nonowners, male, and nonreligious respondents (p < 0.05). Free-ranging cat ownership and abandonment occurred less with owners with more knowledge of biodiversity and invasive species than with respondents with less knowledge of these subjects (p < 0.05). We recommend that cat enthusiasts and wildlife conservationists participate in community-based initiatives, such as campaigns to keep cats indoors. Our study provides a substantially useful framework for other regions where free-ranging cats are undergoing rapid expansion.


Retos y oportunidades de las dimensiones humanas detrás del conflicto entre gatos y fauna Resumen Debido a que las actividades antropogénicas globales causan una enorme pérdida de la biodiversidad, la investigación sobre las dimensiones humanas es esencial para generar planes de manejo aplicables a la conservación de la biodiversidad fuera de las áreas silvestres. Es muy importante lograr que el público participe en este contexto para obtener los beneficios sociales y ambientales. Sin embargo, todavía existen vacíos en el conocimiento sobre cómo lograr el balance entre la conservación y las demandas públicas y cómo incorporar los contextos socioculturales complejos del Antropoceno a la planeación de la conservación. Analizamos el conflicto nacional entre los gatos libres (gatos callejeros o gatos domésticos que se les permite salir) y la fauna en China para estudiar cómo un consenso entre la compasión y la conservación de la biodiversidad puede ayudar en la toma de decisiones. Encuestamos en línea a una muestra aleatoria de personas en China. Se completaron más de 9000 cuestionarios (44.2% de respuesta). En total, los respondientes reportaron un aproximado de 29 millones de gatos libres y que más de cinco millones de gatos domésticos se vuelven ferales al año en China. Quienes respondieron y son dueños de gatos, mujeres y religiosos tuvieron la mayor probabilidad de negar los impactos negativos de los gatos sobre la fauna y de las estrategias actuales de manejo y de mostrar más apoyo por los refugios de gatos abandonados, la adopción y de la recaudación de fondos comunitaria que quienes no son dueños, no son religiosos y son hombres (p < 0.05). La propiedad de gatos libres y el abandono ocurrieron menos con los dueños con más conocimiento sobre la biodiversidad y las especies invasoras que con los respondientes con menos conocimiento sobre estos temas (p < 0.05). Recomendamos que los aficionados a los gatos y los conservacionistas de la fauna participen en las iniciativas comunitarias; por ejemplo, campañas para mantener a los gatos dentro de casa. Nuestro estudio proporciona un marco sustancialmente útil para otras regiones en donde los gatos libres se encuentran en rápida expansión.

18.
Inorg Chem ; 63(13): 5961-5971, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494631

RESUMEN

Titanium-oxo cluster (TOC)-based metal-organic frameworks (MOFs) have received considerable attention in recent years due to their ability to expand the application of TOCs to fields that require highly stable frameworks. Herein, a new cyclic TOC formulated as [Ti6O6(OiPr)8(TTFTC)(phen)2]2 (1, where TTFTC = tetrathiafulvalene tetracarboxylate and phen = phenanthroline) was crystallographically characterized. TOC 1 takes a rectangular ring structure with two phen-modified Ti6 clusters as the width and two TTFTC ligands as the length. An intracluster ligand-to-ligand (TTF-to-phen) charge transfer in 1 was found for TOCs for the first time. Compound 1 undergoes topotactic conversion to generate stable TOC-MOF P1, in which the rectangular framework in 1 formed by a TOC core and ligands is retained, as verified by comprehensive characterization. P1 shows an efficient and rapid selective adsorption capacity for cationic dyes. The experimental adsorption capacity (qex) of P1 reaches a value of up to 789.2 mg/g at 298 K for the crystal violet dye, which is the highest among those of various adsorbents. The calculated models are first used to reveal the structure-property relationship of the cyclic host to different guest dyes. The results further confirmed the host MOF structure of P1.

19.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474317

RESUMEN

The BRI1 EMS suppressor 1(BES1) transcription factor is a crucial regulator in the signaling pathway of Brassinosteroid (BR) and plays an important role in plant growth and response to abiotic stress. Although the identification and functional validation of BES1 genes have been extensively explored in various plant species, the understanding of their role in woody plants-particularly the endangered species Phoebe bournei (Hemsl.) Yang-remains limited. In this study, we identified nine members of the BES1 gene family in the genome of P. bournei; these nine members were unevenly distributed across four chromosomes. In our further evolutionary analysis of PbBES1, we discovered that PbBES1 can be divided into three subfamilies (Class I, Class II, and Class IV) based on the evolutionary tree constructed with Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum. Each subfamily contains 2-5 PbBES1 genes. There were nine pairs of homologous BES1 genes in the synteny analysis of PbBES1 and AtBES1. Three segmental replication events and one pair of tandem duplication events were present among the PbBES1 family members. Additionally, we conducted promoter cis-acting element analysis and discovered that PbBES1 contains binding sites for plant growth and development, cell cycle regulation, and response to abiotic stress. PbBES1.2 is highly expressed in root bark, stem bark, root xylem, and stem xylem. PbBES1.3 was expressed in five tissues. Moreover, we examined the expression profiles of five representative PbBES1 genes under heat and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. This study provides important clues to elucidate the functional characteristics of the BES1 gene family, and at the same time provides new insights and valuable information for the regulation of resistance in P. bournei.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brasinoesteroides/metabolismo , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/genética , Familia de Multigenes , Proteínas de Unión al ADN/metabolismo
20.
Transl Oncol ; 43: 101918, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38412662

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is a prevalent malignancy of the digestive tract. A new prognostic scoring model for colon adenocarcinoma (COAD) is developed in this study based on the genes involved in tumor cell-mediated killing of T cells (GSTTKs), accurately stratifying COAD patients, thus improving the current status of personalized treatment. METHOD: The GEO and TCGA databases served as the sources of the data for the COAD cohort. This study identified GSTTKs-related genes in COAD through single-factor Cox analysis. These genes were used to categorize COAD patients into several subtypes via unsupervised clustering analysis. The biological pathways and tumor microenvironments of different subgroups were compared. We performed intersection analysis between different subtypes to obtain intersection genes. Single-factor Cox regression analysis and Lasso-Cox analysis were conducted to establish clinical prognostic models. Two methods are used to assess the accuracy of model predictions: ROC and Kaplan-Meier analysis. Next, the prediction model was further validated in the validation cohort. Differential immune cell infiltration between various risk categories was identified via single sample gene set enrichment analysis (ssGSEA). The COAD model's gene expression was validated via single-cell data analysis and experiments. RESULT: We established two distinct GSTTKs-related subtypes. Biological processes and immune cell tumor invasion differed significantly between various subtypes. Clinical prognostic models were created using five GSTTKs-related genes. The model's risk score independently served as a prognostic factor. COAD patients were classified as low- or high-risk depending on their risk scores. Patients in the low-risk category recorded a greater chance of surviving. The outcomes from the validation cohort match those from the training set. Risk scores and several tumor-infiltrating immune cells were strongly correlated, according to ssGSEA. Single-cell data illustrated that the model's genes were linked to several immune cells. The experimental results demonstrated a significant increase in the expression of HOXC6 in colon cancer tissue. CONCLUSION: Our research findings established a new gene signature for COAD. This gene signature helps to accurately stratify the risk of COAD patients and improve the current status of individualized care.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA