Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3174-3177, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824356

RESUMEN

With the rapid development of communication technology and detection technology, it is difficult for devices operating in a single spectrum to meet the application requirements of device integration and miniaturization, resulting in the exploration of multi-spectrum compatible devices. However, the functional design of different spectra is often contradictory and difficult to be compatible. In this work, a transparent slit circular metasurface with a high filling ratio is proposed to achieve the compatibility of microwave, infrared and visible light. In the microwave, based on the Pancharatnam-Berry phase theory, the continuous amplitude and binary phase can be customized only by rotating the slit angle to achieve an Airy beam function at 8-12 GHz. In the infrared, the mean infrared emissivity is reduced to 0.3 at 3-14 µm by maintaining high conductive filling ratio, and in visible light, based on the transparency of materials, the mean transmittance can achieve 50% at 400-800 nm. All the results can verify the multi-spectral compatibility performance, which can also verify the validity of our design method. Importantly, the multi-spectral compatible metasurface contributes an option for multifunctional integration, which can be further applied in communication, camouflage, and other fields.

2.
ACS Appl Mater Interfaces ; 15(30): 37026-37037, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37465891

RESUMEN

Achieving the conversion from surface waves (SWs) to propagating waves has captivated long-standing interest, and various ingenious metasurfaces benefiting from the powerful control capability for electromagnetic waves are able to realize efficient SWs directional radiation. Nevertheless, most existing schemes still suffer from the bottlenecks of single radiation channel, uncontrollable radiation intensity, and immutable radiation pattern, which immensely hinder their practical application in high-integration intelligent devices. Herein, a series of appealing strategies are proposed to achieve the dual-channel SWs directional radiation with customizable radiation intensity and switchable radiation pattern. The dual-channel SWs radiation metadevice based on the phase modulation metasurface is designed to directionally radiate SWs in left-handed circular polarized channel and right-handed circular polarized channel and possesses the broadband frequency scanning characteristic. More strikingly, the intensity-customizable dual-channel SWs radiation metadevice loaded with lumped resistors can control the realized gain of two circular polarized radiation beams, and the pattern-switchable dual-channel SWs radiation metadevice loaded with PIN diodes can dynamically adjust the radiation direction of the radiation beams. Numerous simulations and experiments of the proof-of-concept prototypes with modular design corroborate the theoretical predictions. Our methodology shows unprecedented flexibility in regulating SWs directional radiation and has enormous potential in engineering applications.

3.
Opt Express ; 30(25): 45776-45791, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36522975

RESUMEN

Multifunctional electromagnetic (EM) metasurfaces are capable of manipulating electromagnetic waves with kaleidoscopic functions flexibly, which will significantly enhance integration and applications of electronic systems. However, most known design schemes only realize the reflection or transmission functions under a specific angle range, which wastes the other half EM space and restricts wider applications of multifunctional metadevices. Herein, an encouraging strategy of broadband and wide-angle EM wavefronts generator is proposed to produce two independent functions, i.e., antireflections for transverse electric (TE) waves and retroreflection for transverse magnetic (TM) waves, which utilizes band-stop and bandpass responses of the metasurface, respectively. As a feasibility verification of this methodology, a three-layer cascaded metasurface, composed of anisotropic crossbar structures patterned on the two surfaces of a dielectric substrate with sandwiched orthogonal metal-gratings, is designed, fabricated, and measured. Both the simulated and experimental results are in good accordance with theoretical analyses. This full-space metasurface opens up a new route to multifunctional metasurfaces and will further promote engineering applications of metasurfaces.

4.
Opt Express ; 30(11): 19716-19730, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221740

RESUMEN

Metasurfaces have provided unprecedented degrees of freedom in manipulating electromagnetic (EM) waves and also granted high possibility of integrating multiple functions into one single meta-device. In this paper, we propose to incorporate the retroreflection function with transmission function by means of metasurface design and then demonstrate a dual-polarization multi-angle retroreflective metasurface (DMRM) with bilateral transmission bands. To achieve high-efficiency retroreflections, the compact bend structures (CBSs), which exhibit high reflections around 10.0 GHz in X band, are added onto the substrate of the DMRM. Two selected metasurface elements are periodically arranged so as to form 0-π-0 phase profile. By delicately adjusting the periodicity, high-efficiency retroreflections can be produced for both TE and TM-polarized waves under both vertical incidence and oblique incident angles ±50.0°, with an average efficiency of 90.2% at the designed frequency. Meanwhile, the two metasurface elements exhibit high transmission properties and minor phase disparities in S, C and Ku bands, resulting in bilateral transmission windows. Prototypes were designed and fabricated. Both simulated and measured results verified our design. This work provides an effective means of integrating retroreflection functions with other functions and may find applications in target tracking, radomes and other sensor integrated devices in higher frequency or even optical frequency bands.

5.
Opt Express ; 30(11): 19999-20013, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-36221761

RESUMEN

Impedance mismatch generally exists upon interfaces between different media. This is especially true for TE-polarized waves with large incident angles since there is no Brewster effect. As a result, high-efficiency transmission can only be guaranteed within limited incident angle range. It is desirable that transparent windows possess robust angle-stability. In this work, we propose a strategy of realizing transparent windows with extreme angle-stability using anisotropic metasurfaces. Different from traditional isotropic materials, anisotropic metasurfaces require specific three-dimensional permittivity and permeability parameters. Theoretical formulas are derived to realize a highly efficient transmission response without angular dispersion. To validate our design concept, a two-layer cascaded electromagnetic anti-reflector is designed, and it exhibits a characteristic impedance matching for nearly all incidence angles under TE-polarization illumination. As a proof-of-concept, a prototype of extremely angle-stable transparent window is fabricated and measured. Compared with the pure dielectric plate, the reflection coefficients are on average reduced by 40% at 13.5 GHz for TE-polarized waves from 0° to 80°. Therefore, we think, anisotropic cascaded electromagnetic transparent windows are capable of tailoring the electromagnetic parameter tensors as desired, and provide more adjustable degrees of freedom for manipulating electromagnetic wavefronts, which might open up a promising way for electromagnetic antireflection and find applications in radomes, IR windows and others.

6.
ACS Appl Mater Interfaces ; 14(42): 48303-48310, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36250573

RESUMEN

Metasurfaces with simultaneously and independently controllable amplitude and phase have provided a higher degree of freedom in manipulating electromagnetic (EM) waves. Compared with phase- or amplitude-only modulation, the capability of simultaneously controlling the phase and amplitude of EM waves can enable holography with a higher resolution. However, this drastically increases the design complexity of holographic metasurfaces, and the design process is usually quite time-consuming. In this paper, we propose an inverse design of meta-atoms that can simultaneously and independently tailor the phase and amplitude of transmitted waves using customized deep ResNet while eliminating the coupling of parameters. To demonstrate the design method, two holographic metasurfaces were designed using the trained network without the need for parameter sweeping, which will significantly enhance design efficiency. Prototypes were fabricated and measured. Both the simulated and measured results show that high-resolution holography is obtained, which sufficiently verifies the reliability of the design method. Our work paves the way for the intelligent design of metasurfaces and can also be applied to the design of other artificial materials or surfaces.

7.
Opt Express ; 30(16): 29365-29379, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299112

RESUMEN

The transmission of electromagnetic (EM) waves through a dielectric plate will be decreased significantly when the incident angle becomes extremely large, regardless of transverse electric (TE)- or transverse magnetic (TM)- polarization. In this regard, we propose a facile way of tailoring the permittivity of the dielectric material using metasurface to enhance the transmissions of both TE- and TM-polarized waves under extremely large incidence angles. Due to parallel or antiparallel electric fields induced by the metasurface, the net electric susceptibility is altered, and hence the effective permittivity can be tailored to improve the impedance matching on the two air-dielectric interfaces, which enhances the wave transmissions significantly under extreme incident angles. As an example, we apply this method to a typical ceramic-matrix composite (CMC) plate. By incorporating orthogonal meta-gratings into the CMC plate, its effective permittivity is reduced for the TE-polarized waves but increased for the TM-polarized waves under the extreme incidence angle, which can reduce the impedance for the TE-polarization and increase the Brewster angle for the TM-polarization. Therefore, the impedance matchings for both TE- and TM-polarizations are improved simultaneously and dual-polarized transmission enhancements are achieved under the extreme angles. Here, the transmission responses have been numerically and investigated using the finite-difference-time-domain (FDTD) method. A proof-of-principle prototype is designed, fabricated, and measured to verify this method. Both numerical simulations and measurement results show that the prototype can operate under extremely large incidence angles θi∈[75°,85°] with significant transmission enhancement for both TE- and TM-polarizations compared to the pure dielectric plate. This work provides a facile way to enhance the transmissions under extreme angles and can be readily extended to terahertz and optical frequencies.

8.
Artículo en Inglés | MEDLINE | ID: mdl-35834312

RESUMEN

Amplitude-phase control for circular polarized (CP) waves is experiencing a research upsurge in electromagnetics owing to the kaleidoscopic electromagnetic responses and promising application prospects of circular polarizations, and chiral metasurfaces are more facile to achieve a series of intriguing chiral phenomena than natural materials. However, it is difficult for most existing chiral metasurfaces to independently tailor the amplitude and phase of left-handed circular polarized and right-handed circular polarized waves at the same frequency as they suffer the drawbacks of large thickness, multiple layers, and complex structure. Herein, an innovative strategy of single-layer achiral metasurfaces of thickness 0.13λ0 is proposed to independently and simultaneously manipulate the amplitude and phase of orthogonal CP waves. As a proof of concept, an amplitude and phase controlled dual-channel meta-hologram is designed to reconstruct diverse images with high fidelity under orthogonal CP illumination, and the simulated and experimental results collectively validate the availability of our methodology. Significantly, the meta-hologram is also applicable to full polarization states according to the decomposition of electromagnetic waves. The inspiring design of single-layer achiral metasurfaces provides a simple and effective approach to explore chiral effects, and they possess enormous application potential in multitudinous microwave devices.

9.
Opt Express ; 30(5): 7110-7123, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299481

RESUMEN

Structuring elements of gratings brings more freedom in manipulating diffraction waves, e.g., retroreflection using diffraction orders other than the 0th order. Most retroreflective metagratings (RMs) can achieve retroreflection only under one particular direction, limiting their applications. In this paper, we propose a quasi-omnidirectional RM based on wave-vector reversion for TE-polarized waves. The metagrating element is composed of four rotationally-symmetric sub-elements, which is composed of one probe and two directors on its two sides. The substrate-air-metal layer can reverse kz while directors can reverse kx. Therefore, the wave-vector k of reflected waves can be completely reversed by the sub-element, providing necessary momentum for retroreflection. The -2nd diffraction order of the metagrating is tailored to channel out waves with reversed k, leading to retroreflection. Due to the element's four-fold rotational symmetry, retroreflection can be achieved along four directions, covering all of the four quarters of azimuth angle. We demonstrate prototypes in Ku band, and the average backscattering enhancement compared with a metal plane with the same area (SAMP) along the four directions reaches up to 31.3 dB with incident angle 50.0° at 15.0 GHz. Both simulated and measured results verify our design. This work provides another perspective on retroreflection and may find applications in retroreflective functional devices.

10.
Opt Express ; 30(5): 7124-7136, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299482

RESUMEN

A multifunctional metasurface is capable of manipulating electromagnetic waves and achieving kaleidoscopic functions flexibly, which significantly improves the integration and utilization of a single metasurface and has become one of the hotspots in electromagnetics. However, the majority of designs to date can only operate for limited polarization states in half-space and are difficult to show diverse functions at the same time, which restrict the widespread applications of multifunctional metadevices. Herein, an inspiring strategy of a chiral transmission-reflection-selective bifunctional metasurface is proposed to generate two independent functions in co-polarized reflection channel for left-handed circular polarized (LCP) incidence utilizing rotation-induced geometric phase modulation and in co-polarized transmission channel for right-handed circular polarized (RCP) incidence utilizing scaling-induced propagation phase modulation, and both functions appear concurrently under arbitrary linear polarized (LP) incident waves. To verify the feasibility of this methodology, three proof-of-concept metadevices composed of a dual-mode orbital angular momentum (OAM) generator, a bifocal metalens and an integrated metadevice of OAM generator and metalens are constructed and their performances in simulations and experiments are in good accordance with the theoretical ones. This exotic design of bifunctional metasurface will open up a promising way for multifunctional metadevices in engineering applications.

11.
Opt Express ; 29(22): 35490-35500, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34808981

RESUMEN

Metasurfaces possess excellent capabilities to flexibly manipulate electromagnetic waves in multiple frequency domains, which show great potential application in multispectral stealth. Herein, a broadband surface waves coupler based on the design of thin Pancharatnam-Berry (PB) phase gradient metasurfaces (PGMs) of thickness 0.12λ0 is proposed to reduce infrared emission and microwave reflection simultaneously. Low infrared emission results from the high filling ratio of the indium-tin-oxide (ITO) on the surface, and low microwave reflection results from the conversion from propagating waves to surface waves. Intriguingly, this design is also capable of acting as a simple circular polarized (CP) discriminator because orthogonal CP waves are coupled into surface waves propagating along opposite directions. A proof-of-concept prototype is simulated and measured to validate the effectiveness of our methodology. The results indicate that the broadband surface waves coupler shows low infrared emissivity less than 0.28 from 3 to 14 µm and has microwave reflection reduction larger than 10 dB in 7.3-9.5 GHz. The exceptional performances of the proposed broadband surface waves coupler make us believe that our design offers an alternative strategy for multispectral stealth and multifunctional application.

12.
Opt Express ; 29(16): 25022-25031, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34614843

RESUMEN

Vortex beams carrying orbital angular momentum (OAM) have aroused great attention on account of the remarkable potential in the field of communication. It has the characteristics of higher spectrum efficiency, greater channel capacity and stronger anti-interference, which will revolutionize the wireless communications in the future. However, target tracking on a vortex generator in practical applications is becoming a challenge because the backscattering of electromagnetic (EM) waves under oblique incidence is too small for detection. Currently, the main way to solve this problem is to load an extra retroreflector such as Luneburg lens, which in turn leads to increased weights and bulky volumes. In this paper, we propose a vortex generator simultaneously with retroreflective characteristics utilizing an angle-selective metasurface. The meta-atom can achieve broadband polarization conversion under normal incidence and efficient retroreflection under oblique incidence. Without the need for an additional retroreflection phase arrangement, an OAM generator composed of such meta-atoms can be achieved in 15.0-21.0GHz under both x- and y-polarized normal incidence. Meanwhile, four retroreflection channels are opened under oblique illumination of both transverse electric (TE) and transverse magnetic (TM) waves at 20.0GHz. Both the simulated and measured results show excellent performances. The integration of an OAM generator and retroreflector will greatly reduce the weight and volume and save in the cost of production, which will promote the development of miniaturized, multi-role, and even intelligent functional devices.

13.
Opt Express ; 29(13): 20150-20159, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34266110

RESUMEN

With the improvement of equipment integration, it is difficult to meet the increasing functional requirements with the function of a single spectrum. In this work, a multispectral functional metasurface (MFM) is designed to achieve multispectral compatibility between microwave and infrared using multi-optimization. For microwaves, a frequency selective surface (FSS) is designed to achieve frequency selectivity. And for infrared, a twice genetic algorithm (GA) is employed to further increase the metallic filling ratio, thus reducing the infrared emissivity while maintaining the performance of microwave FSS. In order to verify our design and method, the MFM is fabricated and measured, and all the results are consistent with the theoretical design. The performance of FSS can achieve 3dB bandwidth in 7.2-11.2GHz with low insertion losses and stability, and meanwhile the mean infrared emissivity has been reduced to 0.24 in 3-14µm. In summary, the designed multispectral compatible metasurface has wide application value in radome. What's more, the multi-optimization method for designing the multispectral metasurface can also be extended to other fields.

14.
Nat Commun ; 12(1): 2974, 2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34016963

RESUMEN

Metasurfaces have provided unprecedented freedom for manipulating electromagnetic waves. In metasurface design, massive meta-atoms have to be optimized to produce the desired phase profiles, which is time-consuming and sometimes prohibitive. In this paper, we propose a fast accurate inverse method of designing functional metasurfaces based on transfer learning, which can generate metasurface patterns monolithically from input phase profiles for specific functions. A transfer learning network based on GoogLeNet-Inception-V3 can predict the phases of 28×8 meta-atoms with an accuracy of around 90%. This method is validated via functional metasurface design using the trained network. Metasurface patterns are generated monolithically for achieving two typical functionals, 2D focusing and abnormal reflection. Both simulation and experiment verify the high design accuracy. This method provides an inverse design paradigm for fast functional metasurface design, and can be readily used to establish a meta-atom library with full phase span.

15.
Opt Express ; 29(6): 8666-8675, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33820309

RESUMEN

In this work, we propose a method of achieving quasi-continuous linear phase gradient for transmitted waves based on conformal spoof surface plasmon polariton (SSPP). To this end, a SSPP structure with high transmission is firstly designed as the unit cell of the metamaterial. To obtain the phase gradient, SSPP structures are arranged delicately in a way that they are conformal to the brachistochrone curve. In this way, quasi-continuous linear Pancharatnam-Berry (PB) phase profile can be realized strictly along one of the two transverse directions. To verify this idea, a dual-band transmissive metamaterial operating in X and Ku band was designed, fabricated and measured. Due to the phase gradient imparted by the conformal SSPP structures, high-efficiency anomalous refraction can be realized within the two bands. Different from the general PGM, the phase gradient of the conformal SSPP structure allows us to achieve the desired anomalous refraction angle without reconstructing the PB phase. Both the simulation and measurement results are well consistent with theoretical predictions. This work provides another strategy of achieving anomalous refraction and may find applications in beam steering, digital beam forming, etc.

16.
Opt Express ; 29(5): 7544-7557, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33726254

RESUMEN

Multifunctional metasurfaces have exhibited considerable abilities of manipulating electromagnetic (EM) waves, especially in full-space manipulation. However, most works are implemented with functions controlled by polarization or frequency and seldom involve the incidence angle. Herein, we propose a multifunctional full-space metasurface controlled by frequency, polarization and incidence angle. A meta-atom is firstly designed. When EM waves illumine normally in the C-band, it possesses the characteristic of asymmetric transmission with high-efficient polarization conversion. In the Ku-band, both x- and y-polarized EM waves along both sides will be reflected and achieve broadband and high-efficient cross-polarization conversion. Also, when illumined obliquely, both sides can achieve efficient retroreflection at a certain frequency. As a proof of concept, a metasurface consisting of the above meta-atoms is configured as a dual orbital angular momentum (OAM) vortex beam generator and different beam deflector when illumined normally. Meanwhile, it acts as a multi-channel retroreflector when illumined obliquely. Both the simulated and measured results show excellent performances. Our findings provide a new degree of freedom to design multifunctional metasurfaces that can further promote applications.

17.
Sci Rep ; 11(1): 585, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436775

RESUMEN

In this paper, we propose a method of designing ultra-wideband single-layer metasurfaces for cross-polarization conversion, via the introduction of Fano resonances. By adding sub-branches onto the unit cell structure, the induced surface currents are disturbed, leading to coexistence of both bright and dark modes at higher frequencies. Due to the strong interaction between the two modes, Fano resonance can be produced. In this way, five resonances in all are produced by the single-layer metasurface. The first four are conventional and are generated by electric and magnetic resonances, whereas the fifth one is caused by Fano resonance, which further extends the bandwidth. A prototype was designed, fabricated and measured to verify this method. Both the simulated and measured results show that a 1:4.4 bandwidth can be achieved for both x- and y-polarized waves, with almost all polarization conversion ratio (PCR) above 90%. This method provides an effective alternative to metasurface bandwidth extension and can also be extended to higher bands such as THz and infrared frequencies.

18.
Opt Express ; 28(25): 37276-37283, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33379565

RESUMEN

Retroreflection can be achieved by phase gradient imparted by super-cells of metasurfaces. Nevertheless, in most cases, retroreflection can only be achieved for one specific polarization. In this paper, we propose an alternative design strategy and reveal that a polarization-independent multi-channel metasurface based on extraordinary optical diffraction (EOD) can achieve high-efficient retroreflection. A unary unit cell, instead of binary unit cells, is employed to canalize impinging EM waves along targeted diffraction channels. Under oblique incidence, only the -1st diffraction order is maintained and the 0th order and others are suppressed through structural design while the reflection is unaffected under normal incidence. In this way, we can achieve retroreflection in three channels. A proof-of-principle prototype was designed, fabricated and measured to verify this design strategy. The prototype can operate at 20.0 GHz under the incident angle of ±48.6° and 0° with the efficiency of retroreflection about 90%. Both the simulated and measured results show an excellent performance of retroreflection along the three channels, regardless of the polarization state of incident waves. This method offers a fast implementation for retrodirective characteristics with facile planar fabrication and can also be easily extended to THz or optical regimes.

19.
Opt Express ; 28(24): 35724-35733, 2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33379683

RESUMEN

Chromatism generally exists in most metasurfaces. Because of this, the deflected angle of metasurface reflectors usually varies with frequency. This inevitably hinders wide applications of metasurfaces to broadband signal scenarios. Therefore, it is of great significance to overcome chromatism of metasurfaces. With this aim, we firstly analyze necessary conditions for achromatic metasurface deflectors (AMD) and deduce the ideal dispersions of meta-atoms. Then, we establish a Self-Organizing Map (SOM) Neural Network as a prepositive model to obtain a diversified searching map, which is then applied to Greedy Algorithm to search meta-atoms with the required dispersions. Using these meta-atoms, an AMD was designed and simulated, with a thickness about 1/15 the central wavelength. A prototype was fabricated and measured. Both the simulation and measurement show that the proposed AMD can achieve an almost constant deflected angle of 22° under normal incidence within 9.5-10.5GHz. This method may find wide applications in designing functional metasurfaces for satellite communications, mobile wireless communications and others.

20.
Molecules ; 24(14)2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31340484

RESUMEN

In order to enrich and separate three coumarins (columbianetin acetate, osthole and columbianadin) from Angelicae Pubescentis Radix (APR), an efficient method was established by combining macroporous resins (MARs) with preparative high-performance liquid chromatography (PHPLC). Five different macroporous resins (D101, AB-8, DA-201, HP-20 and GDX-201) were used to assess the adsorption and desorption characteristics of three coumarins. The result demonstrated that HP-20 resin possessed the best adsorption and desorption capacities for these three coumarins. Moreover, the adsorption dynamics profiles of three coumarins were well fitted to the pseudo second order equation (R2 > 0.99) for the HP-20 resin. The adsorption process was described by the three isotherms models including Langmuir (R2 > 0.98, 0.046 ≤ RL ≤ 0.103), Freundlich (R2 > 0.99, 0.2748 ≤ 1/n ≤ 0.3103) and Dubinin Radushkevich (R2 > 0.97). The contents of columbianetin acetate, osthole and columbianadin in the product were increased 10.69-fold, 19.98-fold and 19.68-fold after enrichment, respectively. Three coumarins were further purified by PHPLC and the purities of them reached above 98%. Additionally, the anti-inflammatory effects of these three coumarins were assessed by Lipopolysaccharide (LPS)-induced RAW 264.7 cells. It was found that the production of NO and MCP-1 was obviously inhibited by three coumarins. Columbianetin acetate, osthole and columbianadin could be used as potentially natural anti-inflammatory ingredients in pharmaceutical products. It was concluded that the new method combining MARs with PHPLC was efficient and economical for enlarging scale separation and enrichment of columbianetin acetate, osthole and columbianadin with anti-inflammatory effect from the APR extract.


Asunto(s)
Angelica/química , Antiinflamatorios/farmacología , Cumarinas/farmacología , Medicamentos Herbarios Chinos/química , Furocumarinas/farmacología , Adsorción , Animales , Antiinflamatorios/aislamiento & purificación , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Cromatografía Líquida de Alta Presión/instrumentación , Cromatografía Líquida de Alta Presión/métodos , Cumarinas/aislamiento & purificación , Furocumarinas/aislamiento & purificación , Expresión Génica/efectos de los fármacos , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Óxido Nítrico/inmunología , Porosidad , Células RAW 264.7 , Resinas Sintéticas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...