Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1333, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351003

RESUMEN

Commensal bacteria generate immensely diverse active metabolites to maintain gut homeostasis, however their fundamental role in establishing an immunotolerogenic microenvironment in the intestinal tract remains obscure. Here, we demonstrate that an understudied murine commensal bacterium, Dubosiella newyorkensis, and its human homologue Clostridium innocuum, have a probiotic immunomodulatory effect on dextran sulfate sodium-induced colitis using conventional, antibiotic-treated and germ-free mouse models. We identify an important role for the D. newyorkensis in rebalancing Treg/Th17 responses and ameliorating mucosal barrier injury by producing short-chain fatty acids, especially propionate and L-Lysine (Lys). We further show that Lys induces the immune tolerance ability of dendritic cells (DCs) by enhancing Trp catabolism towards the kynurenine (Kyn) pathway through activation of the metabolic enzyme indoleamine-2,3-dioxygenase 1 (IDO1) in an aryl hydrocarbon receptor (AhR)-dependent manner. This study identifies a previously unrecognized metabolic communication by which Lys-producing commensal bacteria exert their immunoregulatory capacity to establish a Treg-mediated immunosuppressive microenvironment by activating AhR-IDO1-Kyn metabolic circuitry in DCs. This metabolic circuit represents a potential therapeutic target for the treatment of inflammatory bowel diseases.


Asunto(s)
Colitis , Firmicutes , Quinurenina , Humanos , Animales , Ratones , Quinurenina/metabolismo , Lisina , Receptores de Hidrocarburo de Aril/metabolismo , Colitis/inducido químicamente , Bacterias/metabolismo , Tolerancia Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo
2.
ISME J ; 17(12): 2426-2440, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950067

RESUMEN

The microbiota-associated factors that influence host susceptibility and immunity to enteric viral infections remain poorly defined. We identified that the herbal monomer ginsenoside Rg3 (Rg3) can shape the gut microbiota composition, enriching robust short-chain fatty acid (SCFA)-producing Blautia spp. Colonization by representative Blautia coccoides and Blautia obeum could protect germ-free or vancomycin (Van)-treated mice from enteric virus infection, inducing type I interferon (IFN-I) responses in macrophages via the MAVS-IRF3-IFNAR signaling pathway. Application of exogenous SCFAs (acetate/propionate) reproduced the protective effect of Rg3 and Blautia spp. in Van-treated mice, enhancing intracellular Ca2+- and MAVS-dependent mtDNA release and activating the cGAS-STING-IFN-I axis by stimulating GPR43 signaling in macrophages. Our findings demonstrate that macrophage sensing of metabolites from specific commensal bacteria can prime the IFN-I signaling that is required for antiviral functions.


Asunto(s)
Interferón Tipo I , Virosis , Ratones , Animales , Inmunidad Innata/genética , Proteínas de la Membrana/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Ácidos Grasos Volátiles
3.
Nat Microbiol ; 8(1): 91-106, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36604506

RESUMEN

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease caused by a phlebovirus in the Bunyaviridae family. Infection can result in systemic inflammatory response syndrome with a high fatality rate, and there are currently no treatments or vaccines available. The microbiota has been implicated in host susceptibility to systemic viral infection and disease outcomes, but whether the gut microbiota is implicated in severe fever with thrombocytopenia syndrome virus (SFTSV) infection is unknown. Here, we analysed faecal and serum samples from patients with SFTS using 16S ribosomal RNA-sequencing and untargeted metabolomics, respectively. We found that the gut commensal Akkermansia muciniphila increased in relative abundance over the course of infection and was reduced in samples from deceased patients. Using germ-free or oral antibiotic-treated mice, we found that A. muciniphila produces the ß-carboline alkaloid harmaline, which protects against SFTSV infection by suppressing NF-κB-mediated systemic inflammation. Harmaline indirectly modulated the virus-induced inflammatory response by specifically enhancing bile acid-CoA: amino acid N-acyltransferase expression in hepatic cells to increase conjugated primary bile acids, glycochenodeoxycholic acid and taurochenodeoxycholic acid. These bile acids induced transmembrane G-protein coupled receptor-5-dependent anti-inflammatory responses. These results indicate the probiotic potential of A. muciniphila in mitigating SFTSV infection.


Asunto(s)
Infecciones por Bunyaviridae , Phlebovirus , Síndrome de Trombocitopenia Febril Grave , Garrapatas , Animales , Ratones , Harmalina , Phlebovirus/genética
4.
Gut Microbes ; 14(1): 2127456, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36195972

RESUMEN

Severe acute pancreatitis (SAP) is a critical illness characterized by a severe systemic inflammatory response resulting in persistent multiple organ failure and sepsis. The intestinal microbiome is increasingly appreciated to play a crucial role in modulation of AP disease outcome, but limited information is available about the identity and mechanism of action for specific commensal bacteria involved in AP-associated inflammation. Here we show that Bifidobacteria, particularly B. animalis, can protect against AP by regulating pancreatic and systemic inflammation in germ-free (GF) and oral antibiotic-treated (Abx) mouse models. Colonization by B. animalis and administration of its metabolite lactate protected Abx and GF mice from AP by reducing serum amylase concentration, ameliorating pancreatic lesions and improving survival rate after retrograde injection of sodium taurocholate. B. animalis relieved macrophage-associated local and systemic inflammation of AP in a TLR4/MyD88- and NLRP3/Caspase1-dependent manner through its metabolite lactate. Supporting our findings from the mouse study, clinical AP patients exhibited a decreased fecal abundance of Bifidobacteria that was inversely correlated with the severity of systemic inflammatory responses. These results may shed light on the heterogeneity of clinical outcomes and drive the development of more efficacious therapeutic interventions for AP, and potentially for other inflammatory disorders.


Asunto(s)
Microbioma Gastrointestinal , Pancreatitis , Enfermedad Aguda , Amilasas/metabolismo , Amilasas/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Bifidobacterium/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ácido Láctico , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Factor 88 de Diferenciación Mieloide/uso terapéutico , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Pancreatitis/metabolismo , Ácido Taurocólico , Receptor Toll-Like 4/metabolismo
5.
PLoS Pathog ; 18(6): e1010620, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696443

RESUMEN

Intestinal microbial metabolites have been increasingly recognized as important regulators of enteric viral infection. However, very little information is available about which specific microbiota-derived metabolites are crucial for swine enteric coronavirus (SECoV) infection in vivo. Using swine acute diarrhea syndrome (SADS)-CoV as a model, we were able to identify a greatly altered bile acid (BA) profile in the small intestine of infected piglets by untargeted metabolomic analysis. Using a newly established ex vivo model-the stem cell-derived porcine intestinal enteroid (PIE) culture-we demonstrated that certain BAs, cholic acid (CA) in particular, enhance SADS-CoV replication by acting on PIEs at the early phase of infection. We ruled out the possibility that CA exerts an augmenting effect on viral replication through classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling, innate immune suppression or viral attachment. BA induced multiple cellular responses including rapid changes in caveolae-mediated endocytosis, endosomal acidification and dynamics of the endosomal/lysosomal system that are critical for SADS-CoV replication. Thus, our findings shed light on how SECoVs exploit microbiome-derived metabolite BAs to swiftly establish viral infection and accelerate replication within the intestinal microenvironment.


Asunto(s)
Alphacoronavirus , Infecciones por Coronavirus , Enfermedades de los Porcinos , Alphacoronavirus/fisiología , Animales , Ácidos y Sales Biliares , Caveolas , Diarrea , Porcinos
6.
Microb Biotechnol ; 15(4): 1235-1252, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34536334

RESUMEN

In poultry, HyLine (HL) Hens are known for their excellent laying performance. However, ZhenNing (ZN) Hens, a native chicken breed in China, are known for their unique flavour. The intestinal mucosa, which is the main organ for nutrient absorption, could affect livestock product quality. In ZN Hens' intestinal mucosa, we found more villus wrinkles, larger villus circumference and higher amino acid transporters mRNA abundance compared with HL Hens. Among three laying periods of ZN Hens, in the intestinal lumen, Lactobacillus salivarius (L. sa.), Lactobacillus agilis (L. ag.) and Lactobacillus aviarius were the predominant species in the laying peak period. Furthermore, multiple-antibiotics feeding in ZN Hens and predominant Lactobacillus feeding in HL Hens suggested that these Lactobacilli could indeed increase villus wrinkles and improve intestinal absorption. In HL Hens, L. sa. + L. ag. treatment could promote organoids budding in vitro, and promote epithelial proliferation in vivo. Collectively, the unique intestinal mucosa morphology in ZN Hens was due to the high abundance of intestinal L. sa. and L. ag. Transplant these Lactobacilli to HL Hens could increase their intestinal probiotics abundance, fine adjust the intestinal stem cell function and promote the epithelial proliferation, in turn, increase villus winkles and mucosal absorption area.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Alimentación Animal/análisis , Animales , Pollos/metabolismo , Dieta , Femenino , Lactobacillus/genética
7.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975932

RESUMEN

Intestinal microbiomes are of vital importance in antagonizing systemic viral infection. However, very little literature has shown whether commensal bacteria play a crucial role in protecting against enteric virus systemic infection from the aspect of modulating host innate immunity. In the present study, we utilized an enteric virus, encephalomyocarditis virus (EMCV), to inoculate mice treated with phosphate-buffered saline (PBS) or given an antibiotic cocktail (Abx) orally or intraperitoneally to examine the impact of microbiota depletion on virulence and viral replication in vivo Microbiota depletion exacerbated the mortality, neuropathogenesis, viremia, and viral burden in brains following EMCV infection. Furthermore, Abx-treated mice exhibited severely diminished mononuclear phagocyte activation and impaired type I interferon (IFN) production and expression of IFN-stimulated genes (ISG) in peripheral blood mononuclear cells (PBMC), spleens, and brains. With the help of fecal bacterial 16S rRNA sequencing of PBS- and Abx-treated mice, we identified a single commensal bacterium, Blautia coccoides, that can restore mononuclear phagocyte- and IFNAR (IFN-α/ß receptor)-dependent type I IFN responses to restrict systemic enteric virus infection. These findings may provide insight into the development of novel therapeutics for preventing enteric virus infection or possibly alleviating clinical diseases by activating host systemic innate immune responses via respective probiotic treatment using B. coccoidesIMPORTANCE While cumulative data indicate that indigenous commensal bacteria can facilitate enteric virus infection, little is known regarding whether intestinal microbes have a protective role in antagonizing enteric systemic infection by modulating host innate immunity. Although accumulating literature has pointed out that the microbiota has a fundamental impact on host systemic antiviral innate immune responses mediated by type I interferon (IFN), only a few specific commensal bacteria species have been revealed to be capable of regulating IFN-I and ISG expression, not to mention the underlying mechanisms. Thus, it is important to understand the cross talk between microbiota and host anti-enteric virus innate immune responses and characterize the specific bacterial species that possess protective functions. Our study demonstrates how fundamental innate immune mediators such as mononuclear phagocytes and type I IFN are regulated by commensal bacteria to antagonize enteric virus systemic infection. In particular, we have identified a novel commensal bacterium, Blautia coccoides, that can restrict enteric virus replication and neuropathogenesis by activating IFN-I and ISG responses in mononuclear phagocytes via an IFNAR- and STAT1-mediated signaling pathway.


Asunto(s)
Infecciones por Cardiovirus/prevención & control , Virus de la Encefalomiocarditis/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata , Interferón Tipo I/inmunología , Viremia/inmunología , Viremia/prevención & control , Animales , Antibacterianos/administración & dosificación , Infecciones por Cardiovirus/inmunología , Clostridiales/inmunología , Virus de la Encefalomiocarditis/patogenicidad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Simbiosis/inmunología , Replicación Viral/inmunología
8.
J Virol ; 93(24)2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31554686

RESUMEN

Outbreaks of severe diarrhea in neonatal piglets in Guangdong, China, in 2017 resulted in the isolation and discovery of a novel swine enteric alphacoronavirus (SeACoV) derived from the species Rhinolophus bat coronavirus HKU2 (Y. Pan, X. Tian, P. Qin, B. Wang, et al., Vet Microbiol 211:15-21, 2017). SeACoV was later referred to as swine acute diarrhea syndrome CoV (SADS-CoV) by another group (P. Zhou, H. Fan, T. Lan, X.-L. Yang, et al., Nature 556:255-258, 2018). The present study was set up to investigate the potential species barriers of SADS-CoV in vitro and in vivo We first demonstrated that SADS-CoV possesses a broad species tropism and is able to infect cell lines from diverse species, including bats, mice, rats, gerbils, hamsters, pigs, chickens, nonhuman primates, and humans. Trypsin contributes to but is not essential for SADS-CoV propagation in vitro Furthermore, C57BL/6J mice were inoculated with the virus via oral or intraperitoneal routes. Although the mice exhibited only subclinical infection, they supported viral replication and prolonged infection in the spleen. SADS-CoV nonstructural proteins and double-stranded RNA were detected in splenocytes of the marginal zone on the edge of lymphatic follicles, indicating active replication of SADS-CoV in the mouse model. We identified that splenic dendritic cells (DCs) are the major targets of virus infection by immunofluorescence and flow cytometry approaches. Finally, we demonstrated that SADS-CoV does not utilize known CoV receptors for cellular entry. The ability of SADS-CoV to replicate in various cells lines from a broad range of species and the unexpected tropism for murine DCs provide important insights into the biology of this bat-origin CoV, highlighting its possible ability to cross interspecies barriers.IMPORTANCE Infections with bat-origin coronaviruses (CoVs) (severe acute respiratory syndrome CoV [SARS-CoV] and Middle East respiratory syndrome CoV [MERS-CoV]) have caused severe illness in humans after "host jump" events. Recently, a novel bat-HKU2-like CoV named swine acute diarrhea syndrome CoV (SADS-CoV) has emerged in southern China, causing lethal diarrhea in newborn piglets. It is important to assess the species barriers of SADS-CoV infection since the animal hosts (other than pigs and bats) and zoonotic potential are still unknown. An in vitro susceptibility study revealed a broad species tropism of SADS-CoV, including various rodent and human cell lines. We established a mouse model of SADS-CoV infection, identifying its active replication in splenic dendritic cells, which suggests that SADS-CoV has the potential to infect rodents. These findings highlight the potential cross-species transmissibility of SADS-CoV, although further surveillance in other animal populations is needed to fully understand the ecology of this bat-HKU2-origin CoV.


Asunto(s)
Alphacoronavirus/fisiología , Quirópteros/virología , Infecciones por Coronavirus/transmisión , Infecciones por Coronavirus/virología , Infección Hospitalaria/virología , Células Dendríticas/virología , Diarrea/virología , Síndrome Respiratorio Agudo Grave/virología , Alphacoronavirus/genética , Alphacoronavirus/patogenicidad , Animales , Línea Celular , Células Cultivadas , Pollos , China/epidemiología , Infecciones por Coronavirus/epidemiología , Diarrea/veterinaria , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Ratas , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/genética , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/crecimiento & desarrollo , Síndrome Respiratorio Agudo Grave/patología , Síndrome Respiratorio Agudo Grave/transmisión , Síndrome Respiratorio Agudo Grave/veterinaria , Especificidad de la Especie , Bazo/patología , Bazo/virología , Porcinos , Internalización del Virus , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...