Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 29(49): 73865-73877, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35622284

RESUMEN

In this study, a one-part alkali-activated slag (AAS) composed of ground-granulated blast furnace slag, desulfurized gypsum, and hydrated lime is proposed as alternative to cement for the production of cemented fine tailings backfill (CFTB), which is an environmentally friendly binder consisting of 93.72 wt.% industrial solid waste. Results show that AAS with 67.83 wt.% slag, 25.92 wt.% desulfurized gypsum, and 6.25 wt.% hydrated lime yields the highest strength, which is 1.7-3.2 times that of ordinary Portland cement (OPC). Aside from calcium silicate hydrate gel, appreciable quantity of ettringite characterized by interlocking needles structure and high bound water is also produced during the AAS hydration process. In addition, the hydration heat of the AAS binder is 48% less than that of OPC. Moreover, CFTB made of AAS provides better workability than that of CFTB with OPC up to 20 h. The findings of this study will contribute to the production of more cost-effective, durable, and environmental-friendly cemented fine tailings backfill.

2.
J Mater Chem B ; 10(19): 3759-3769, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35467687

RESUMEN

The hydrophobicity and inertness of the polypropylene (PP) material surface usually lead to serious biofouling and bacterial infections, which hamper its potential application as a biomedical polymer. Many strategies have been developed to improve its antifouling or antibacterial properties, yet designing a surface to achieve both antifouling and antibacterial performances simultaneously remains a challenge. Herein, we construct a dual-function micropatterned PP surface with antifouling and antibacterial properties through plasma activation, photomask technology and ultraviolet light-induced graft polymerization. Based on the antifouling agent poly(2-methacryloyloxyethyl phosphate choline) (PMPC) and the antibacterial agent quaternized poly(N,N-dimethylamino)ethyl methacrylate (QPDMAEMA), two different micropatterning structures have been successfully prepared: PP-PMPC-QPDMAEMA in which QPDMAEMA is the micropattern and PMPC is the coating polymer, and PP-QPDMAEMA-PMPC in which PMPC is the micropattern and QPDMAEMA is the coating polymer. The composition, elemental distribution and surface morphology of PP-PMPC-QPDMAEMA and PP-QPDMAEMA-PMPC have been thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. Compared with pristine PP, the two types of micropatterned PP films exhibit good surface hydrophilicity as characterized by water contact angle measurements. The results of anti-protein adsorption, platelet adhesion and antibacterial evaluation showed that PP-PMPC-QPDMAEMA and PP-QPDMAEMA-PMPC had good anti-protein adsorption properties, especially for lysozyme (Lyz). They can effectively prevent platelet adhesion, and the anti-platelet adhesion performance of PP-QPDMAEMA-PMPC is slightly better than that of the PP-PMPC-QPDMAEMA sample. The sterilization rate of S. aureus and E. coli is as high as 95% for the two types of micropatterned PP films. Due to the rational design of micropatterns on the PP surface, the two classes of dual-functional PP materials realize both the resistance of protein and platelet adhesion, and the killing of bacteria at the same time. We anticipate that this work could provide a design strategy for the construction of multifunctional biomedical polymer materials.


Asunto(s)
Incrustaciones Biológicas , Polipropilenos , Antibacterianos/química , Antibacterianos/farmacología , Materiales Biocompatibles/química , Incrustaciones Biológicas/prevención & control , Escherichia coli , Polímeros/química , Polímeros/farmacología , Polipropilenos/química , Polipropilenos/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus
3.
Nanotechnology ; 33(13)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-34929685

RESUMEN

Oxygen evolution reaction (OER) is an important half-cell reaction of the electrical water splitting, for its high overpotential associated with sluggish OER kinetics. Therefore, it is critical to develop highly active and durable electrocatalysts to reduce the overpotential. Herein, ultra-small RuO2nanoparticles (NPs) supported on onion-like carbon (OLC) and carbon nanotube (CNT) are successfully synthesized by means of wet impregnation combined with annealing treatment, respectively. The microstructure characterization results showed OLC perfect graphitic carbon layer structure, and the RuO2NPs supported on the OLC possess larger particle size compared with the RuO2NPs supported on the CNT. Moreover, the electronic structure of Ru in RuO2/OLC was also optimized by the OLC support to be beneficial for the OER. The OER performance of the catalysts were investigated in 1 M KOH solution. The results show RuO2/OLC has a comparable OER activity to the commercial RuO2, but a significantly higher mass activity than the commercial RuO2. When compared with the RuO2/CNT, RuO2/OLC not only exhibits lower overpotential and Tafel slop, but also owns more active sites and higher TOF value, indicating the OLC support improved the OER activity of RuO2/OLC. Moreover, RuO2/OLC showed a superior stability compared with RuO2/CNT, which can be attributed to the excellent electrochemical oxidation-resistance of the OLC.

4.
J Xray Sci Technol ; 28(2): 197-218, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31985483

RESUMEN

BACKGROUND: Breast cancer is a common disease in women. Early detection and early treatment can reduce breast cancer mortality. Studies have shown that breast cancer microcalcifications is one of the important clinical manifestations of early breast cancer, and sometimes even the only manifestation. When the mammography image shows typical malignant microcalcification, it can be diagnosed as breast cancer without any other signs of malignancy. In the aided diagnosis of microcalcifications, it is a crucial step to automatically find and locate regions of interest containing microcalcifications. However, the existing feature extraction method for microcalcifications only extracts features in the time domain or wavelet domain, and does not completely represent all the information of the region of interest. An extraction method based on the combination of Dual-Tree Complex Wavelet Transform (DTCWT) and texture features is proposed in the paper. METHODS: First, the processing operations including denoising, enhancement, and edge detection were performed on mammograms. Sub-image segmentation is then performed. DTCWT features and texture features are extracted for each sub-image.DTCWT features are combined with texture features, and then genetic algorithm is used for feature optimization. The features are classified by the Extreme Learning Machine (ELM) to achieve rapid detection and automatic extraction of ROI with microcalcifications. The experimental results verify that the feature model proposed in this paper has the highest detection rate for ROI regions. The ROI region extracted by the proposed feature model was used as subsequent experimental data. Three different methods were used to detect the microcalcifications, including Top-hat, wavelet transform, and methods combining Top-Hat and wavelet transform. RESULTS: The method was applied to 100 mammograms from the mammograms database of women in Northeast China. In the automatic extraction of ROI, the accuracy, sensitivity, specificity, positive accuracy and negative accuracy of the proposed model combined with DTCWT were 95.92%, 96.71%, 92.20%, 93.65%, 96.33%, respectively. When the Top-hat algorithm was used for microcalcifications detection, the sensitivity reached 89.6%, and the false positive detection rate was 2.6. When the wavelet transform algorithm was used for microcalcifications detection, the sensitivity was 91.1%, and the false positive detection rate was 3.28. When the combined algorithm was used for microcalcifications detection, the sensitivity was 86.7%, and the false positive detection rate decreased to 1.35. CONCLUSIONS: The proposed model combined with DTCWT features achieves better result in the automatic extraction of ROI. Moreover, in the subsequent detection of microcalcifications based on three methods, the three methods achieved better results in sensitivity and false positive detection rate, respectively.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Calcinosis/diagnóstico por imagen , Mamografía/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Análisis de Ondículas , Adulto , Anciano , Mama/diagnóstico por imagen , China , Femenino , Humanos
5.
ACS Biomater Sci Eng ; 6(7): 3799-3810, 2020 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33463331

RESUMEN

Polylactic acid (PLA) is one of the biodegradable materials that has been used in the areas of surgical healing lines, cancer treatment, and wound healing. However, the application of PLA is still rather limited due to its high hydrophobicity and poor antibacterial activity. In order to enhance the antifouling and antibacterial performances of PLA, here we modified the surface of PLA with various sizes of hydrogel micropatterns in negative or positive mode using plasma treatment, the photomask technique, and UV-graft polymerization. The hydrogel micropatterns consist of poly(ethylene glycol) diacrylate (PEGDA), poly(2-methacryloyloxyethylphosphorylcholine) (PMPC), and poly(methacryloyloxyethyltrimethylammonium chloride) (PDMC). Compared to PLA, the patterned PLA (PLA-PMPC/PDMC/PEGDA) shows obviously enhanced antifouling and antibacterial activities. For PLA-PMPC/PDMC/PEGDA with either positive or negative micropatterns, the antifouling and antibacterial properties are gradually increasing with decreasing the size of micropatterns. Compared with PLA-PMPC/PDMC/PEGDA bearing positive and negative micropatterns in the same size, the PLA-PMPC/PDMC/PEGDA with negative micropatterns exhibits slightly better biological activity and the PLA-PMPC/PDMC/PEGDA with 3 µm negative hydrogel micropatterns shows the best hydrophilicity, antifouling, and antibacterial properties. Combining the in vitro hemolysis assay, cytotoxicity, water absorption test, and degradation test results, it is suggested that the fabrication of hydrogel micropatterns onto the PLA surface could significantly improve biological activities of PLA. We expect that this work would provide a new strategy to potentially develop PLA as a promising wound dressing.


Asunto(s)
Hidrogeles , Poliésteres , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles
6.
J Mater Chem B ; 7(33): 5078-5088, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31432877

RESUMEN

Polymer materials with high biocompatibility and versatile functions are urgently required in the biomedical field. The hydrophobic surface and inert traits of polymer materials usually encounter severe biofouling and bacterial infection which hinder the potential application of polymers as biomedical materials. Although many antifouling or antimicrobial coatings have been developed for modification of biomedical devices/implants, few can simultaneously fulfill the requirements for antimicrobial and antifouling activities. Herein, we constructed bifunctional micropatterns with antifouling and antimicrobial properties onto polypropylene (PP) films using argon plasma activation treatment, photomask technique and UV-initiated graft polymerization method. Different sizes of PMPC/PTM/PEGDA micropatterns were fabricated on PP films to yield patterned PP-PMPC/PTM/PEGDA as evidenced by infrared (IR) spectroscopy, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), where PMPC is poly(2-methacryloyloxyethyl phosphorylcholine) for enhancement of hydrophilicity and biocompatibility, PTM is poly(methacryloyloxyethyltrimethylammonium chloride) for contribution to antimicrobial activity and PEGDA is poly(ethylene glycol diacrylate) as the crosslinker. The surface hydrophilicity of patterned PP-PMPC/PTM/PEGDA was characterized by the static water contact angle test. The results showed that the PP sample with a micropattern with the size of 5 µm exhibited the best hydrophilicity. For biological assays of patterned PP-PMPC/PTM/PEGDA, the micropattern size at 5 µm performed the best for both antiplatelet adhesion and antimicrobial activities. We anticipate that this work could provide a new method for building bifunctional biomedical materials to promote the application of PP in biomedical fields.


Asunto(s)
Compuestos de Amonio/química , Antiinfecciosos/química , Fosforilcolina/análogos & derivados , Polietilenglicoles/química , Ácidos Polimetacrílicos/química , Polipropilenos/química , Antiinfecciosos/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Incrustaciones Biológicas/prevención & control , Plaquetas/citología , Plaquetas/fisiología , Adhesión Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fosforilcolina/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
7.
Nanomaterials (Basel) ; 9(7)2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31373284

RESUMEN

Nickel phyllosilicates have attracted much attention owing to their potential applications in various fields. Herein, Ni3Si4O10(OH)2 porous microspheres (NiSi-PMs) with a diameter of 1.2 to 3.2 µm were successfully fabricated via a urea-assisted hydrothermal method, and subsequently used to prepare supported Pd catalyst. Characterizations of the NiSi-PMs and the obtained catalyst, combined with the catalytic performance for the hydrogenation reaction, are presented and discussed. The BET surface area and pore volume of the NiSi-PMs were 196.2 m2 g-1 and 0.70 cm3 g-1, respectively. The Pd/NiSi-PMs catalyst exhibited remarkable catalytic activity for the hydrogenation of styrene under mild conditions, with a turnover frequency of 5234 h-1, and the catalyst was recovered and recycled for six consecutive cycles without any discernible loss of activity. H2-TPR and H2-TPD revealed that the activity of the catalysts was closely related to the adsorption property for hydrogen. The present Ni3Si4O10(OH)2 supported Pd catalyst afforded a promising and competitive candidate for heterogeneous catalysis.

8.
Adv Mater ; 29(37)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28782848

RESUMEN

2D nanocarbon-based materials with controllable pore structures and hydrophilic surface show great potential in electrochemical energy storage systems including lithium sulfur (Li-S) batteries. This paper reports a thermal exfoliation of metal-organic framework crystals with intrinsic 2D structure into multilayer graphene stacks. This family of nanocarbon stacks is composed of well-preserved 2D sheets with highly accessible interlayer macropores, narrowly distributed 7 Å micropores, and ever most polar pore walls. The surface polarity is quantified both by its ultrahigh water vapor uptake of 14.3 mmol g-1 at low relative pressure of P/P0 = 0.4 and ultrafast water wetting capability in less than 10.0 s. Based on the structural merits, this series hydrophilic multilayer graphene stack is showcased as suitable model cathode host for unveiling the challenging surface chemistry issue in Li-S batteries.

9.
Adv Mater ; 29(23)2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28417502

RESUMEN

The reversible formation of chemical bonds has potential for tuning multi-electron redox reactions in emerging energy-storage applications, such as lithium-sulfur batteries. The dissolution of polysulfide intermediates, however, results in severe shuttle effect and sluggish electrochemical kinetics. In this study, quinonoid imine is proposed to anchor polysulfides and to facilitate the formation of Li2 S2 /Li2 S through the reversible chemical transition between protonated state (NH+ ) and deprotonated state (N). When serving as the sulfur host, the quinonoid imine-doped graphene affords a very tiny shuttle current of 2.60 × 10-4 mA cm-2 , a rapid redox reaction of polysulfide, and therefore improved sulfur utilization and enhanced rate performance. A high areal specific capacity of 3.72 mAh cm-2 is achieved at 5.50 mA cm-2 on the quinonoid imine-doped graphene based electrode with a high sulfur loading of 3.3 mg cm-2 . This strategy sheds a new light on the organic redox mediators for reversible modulation of electrochemical reactions.

10.
Sci Bull (Beijing) ; 62(18): 1267-1274, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36659455

RESUMEN

Lithium-sulfur (Li-S) batteries with intrinsic merits in high theoretical energy density are the most promising candidate as the next-generation power sources. The strategy to achieve a high utilization of active materials with high energy efficiency is strongly requested for practical applications with less energy loss during repeated cycling. In this contribution, a metal/nanocarbon layer current collector is proposed to enhance the redox reactions of polysulfides in a working Li-S cell. Such a concept is demonstrated by coating graphene-carbon nanotube hybrids (GNHs) on routine aluminum (Al) foil current collectors. The interfacial conductivity and adhesion between the current collector and active material are significantly enhanced. Such novel cell configuration with metal/nanocarbon layer current collectors affords abundant Li ions for rapid redox reactions with small overpotential. Consequently, the Li-S cells with nanostructured current collectors exhibit an initial discharge capacity of 1,113mAhg-1 at 0.5C, which is ∼300mAhg-1 higher than those without a GNH coating layer. The capacity retention is 73% for cells with GNH after 300 cycles. A reduced voltage hysteresis and a high energy efficiency of ca. 90% are therefore achieved. Moreover, the Al/GNH layer current collectors are easily implanted into current cell assembly process for energy storage devices based on complex multi-electron redox reactions (e.g., Li-S batteries, Li-O2 batteries, fuel cells, and flow batteries).

11.
Materials (Basel) ; 9(11)2016 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-28774001

RESUMEN

This paper proposes a coupled thermal-hydrological-mechanical damage (THMD) model for the failure process of rock, in which coupling effects such as thermally induced rock deformation, water flow-induced thermal convection, and rock deformation-induced water flow are considered. The damage is considered to be the key factor that controls the THM coupling process and the heterogeneity of rock is characterized by the Weibull distribution. Next, numerical simulations on excavation-induced damage zones in Äspö pillar stability experiments (APSE) are carried out and the impact of in situ stress conditions on damage zone distribution is analysed. Then, further numerical simulations of damage evolution at the heating stage in APSE are carried out. The impacts of in situ stress state, swelling pressure and water pressure on damage evolution at the heating stage are simulated and analysed, respectively. The simulation results indicate that (1) the v-shaped notch at the sidewall of the pillar is predominantly controlled by the in situ stress trends and magnitude; (2) at the heating stage, the existence of confining pressure can suppress the occurrence of damage, including shear damage and tensile damage; and (3) the presence of water flow and water pressure can promote the occurrence of damage, especially shear damage.

12.
Small ; 11(39): 5243-52, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26265205

RESUMEN

A nanostructured carbon with high specific surface area (SSA), tunable pore structure, superior electrical conductivity, mechanically robust framework, and high chemical stability is an important requirement for electrochemical energy storage. Porous graphene fabricated by chemical activation and liquid etching has a high surface area but very limited volume of electrochemically accessible mesopores. Herein, an effective strategy of in situ formation of hierarchically mesoporous oxide templates with small pores induced by Kirkendall diffusion and large pores attributed to evaporation of deliberately introduced volatile metal is proposed for chemical vapor deposition assembly of porous graphene frameworks (PGFs). The PGFs inherit the hierarchical mesoporous structure of the templates. A high SSA of 1448 m(2) g(-1), 91.6% of which is contributed by mesopores, and a mesopore volume of 2.40 cm(3) g(-1) are attained for PGFs serving as reservoirs of ions or active materials in electrochemical energy storage applications. When the PGFs are applied in lithium-sulfur batteries, a very high sulfur utilization of 71% and a very low fading rate of ≈0.04% per cycle after the second cycle are achieved at a current rate of 1.0 C. This work provides a general strategy for the rational construction of mesoporous structures induced by a volatile metal, with a view toward the design of hierarchical nanomaterials for advanced energy storage.

13.
ACS Nano ; 8(11): 11280-9, 2014 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-25338265

RESUMEN

Hollow nanostructures afford intriguing structural features ranging from large surface area and fully exposed active sites to kinetically favorable mass transportation and tunable surface permeability. The unique properties and potential applications of graphene nanoshells with well-defined small cavities and delicately designed graphene shells are strongly considered. Herein, a mesoscale approach to fabricate graphene nanoshells with a single or few graphene layers and quite small diameters through a catalytic self-limited assembly of nanographene on in situ formed nanoparticles was proposed. The graphene nanoshells with a diameter of ca. 10-30 nm and a pore volume of 1.98 cm(3) g(-1) were employed as hosts to accommodate the sulfur for high-rate lithium-sulfur batteries. A very high initial discharge capacity of 1520 mAh g(-1), corresponding to 91% sulfur utilization rate at 0.1 C, was achieved on a graphene nanoshell/sulfur composite with 62 wt % loading. A very high retention of 70% was maintained when the current density increased from 0.1 C to 2.0 C, and an ultraslow decay rate of 0.06% per cycle during 1000 cycles was detected.

14.
Chem Commun (Camb) ; 49(82): 9383-5, 2013 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-23877131

RESUMEN

This communication describes the design and synthesis of anti-sintering and -coke nickel phyllosilicate (PS) nanotubes (Ni/PSn) for hydrogen production via reforming reactions. The introduction of nickel particles in PS nanotubes could effectively maintain the Ni size and increase the resistance of metal particles for carbon deposition.

15.
Nanoscale Res Lett ; 8(1): 2, 2013 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-23279781

RESUMEN

Hollow or porous hematite (α-Fe2O3) nanoarchitectures have emerged as promising crystals in the advanced materials research. In this contribution, hierarchical mesoporous α-Fe2O3 nanoarchitectures with a pod-like shape were synthesized via a room-temperature coprecipitation of FeCl3 and NaOH solutions, followed by a mild hydrothermal treatment (120°C to 210°C, 12.0 h). A formation mechanism based on the hydrothermal evolution was proposed. ß-FeOOH fibrils were assembled by the reaction-limited aggregation first, subsequent and in situ conversion led to compact pod-like α-Fe2O3 nanoarchitectures, and finally high-temperature, long-time hydrothermal treatment caused loose pod-like α-Fe2O3 nanoarchitectures via the Ostwald ripening. The as-synthesized α-Fe2O3 nanoarchitectures exhibit good absorbance within visible regions and also exhibit an improved performance for Li-ion storage with good rate performance, which can be attributed to the porous nature of Fe2O3 nanoarchitectures. This provides a facile, environmentally benign, and low-cost synthesis strategy for α-Fe2O3 crystal growth, indicating the as-prepared α-Fe2O3 nanoarchitectures as potential advanced functional materials for energy storage, gas sensors, photoelectrochemical water splitting, and water treatment.

16.
ACS Nano ; 6(12): 10759-69, 2012 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-23153374

RESUMEN

The theoretically proposed graphene/single-walled carbon nanotube (G/SWCNT) hybrids by placing SWCNTs among graphene planes through covalent C-C bonding are expected to have extraordinary physical properties and promising engineering applications. However, the G/CNT hybrids that have been fabricated differ greatly from the proposed G/SWCNT hybrids because either the covalent C-C bonding is not well constructed or only multiwalled CNTs/carbon nanofibers rather than SWCNTs are available in the hybrids. Herein, a novel G/SWCNT hybrid was successfully fabricated by a facile catalytic growth on layered double hydroxide (LDH) at a high temperature over 950 °C. The thermally stable Fe nanoparticles and the uniform structure of the calcined LDH flakes are essential for the simultaneously catalytic deposition of SWCNTs and graphene. The SWCNTs and the CVD-grown graphene, as well as the robust connection between the SWCNTs and graphene, facilitated the construction of a high electrical conductive pathway. The internal spaces between the two stacked graphene layers and among SWCNTs offer room for sulfur storage. Therefore, the as obtained G/SWCNT-S cathode exhibited excellent performance in Li-S batteries with a capacity as high as 650 mAh g(-1) after 100 cycles even at a high current rate of 5 C. Such a novel G/SWCNT hybrid can serve not only as a prototype to shed light on the chemical principle of G/CNT synthesis but also as a platform for their further applications in the area of nanocomposites, heterogeneous catalysis, drug delivery, electrochemical energy storage, and so on.

17.
Sci Rep ; 2: 612, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22937221

RESUMEN

Hydrogen bond is a typical noncovalent bond with its strength only one-tenth of a general covalent bond. Because of its easiness to fracture and re-formation, materials based on hydrogen bonds can enable a reversible behavior in their assembly and other properties, which supplies advantages in fabrication and recyclability. In this paper, hydrogen bond nanoscale networks have been utilized to separate water and oil in macroscale. This is realized upon using nanowire macro-membranes with pore sizes ~tens of nanometers, which can form hydrogen bonds with the water molecules on the surfaces. It is also found that the gradual replacement of the water by ethanol molecules can endow this film tunable transport properties. It is proposed that a hydrogen bond network in the membrane is responsible for this switching effect. Significant application potential is demonstrated by the successful separation of oil and water, especially in the emulsion forms.


Asunto(s)
Aceites/química , Agua/química , Emulsiones/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos de Manganeso/química , Nanocables/química , Nanocables/ultraestructura , Óxidos/química
18.
Inorg Chem ; 51(11): 6020-31, 2012 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-22583059

RESUMEN

(Ni(1-x),Mg(x))(3)Si(2)O(5)(OH)(4) solid-solution nanotubes (NTs) with tunable compositions were hydrothermally synthesized by altering the molar ratio of Mg(2+) to Ni(2+). The as-synthesized NTs were loaded with sub-0.06 wt % palladium (Pd; ∼0.045 wt %) for Suzuki-Miyaura (SM) coupling reactions between iodobenzene or 4-iodotoluene and phenylboronic acid. The (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) NTs supported by 0.045 wt % Pd promoted the iodobenzene-participated coupling reaction with a high yield of >99%, an excellent recycling catalytic performance during 10 cycles of catalysis with yields of ∼99%, and also an extremely low Pd releasing level of ∼0.02 ppm. High-activity Pd and PdO clusters, multitudes of dislocations, and defects and terraces contained within the NTs should contribute to the (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) NTs supported by 0.045 wt % Pd as a robust, reusable, and high-efficiency catalyst for SM coupling reactions with an extremely low Pd releasing level. The present hydrothermally stable (Ni,Mg)(3)Si(2)O(5)(OH)(4) (Mg(2+):Ni(2+) = 1.0:1.0) solid-solution silicate NTs provided an ideal alternative tubular-structured support for noble- or transition-metal catalysts with low Pd loading, good recycling, and extremely low ppb levels of Pd release, which could also be extended to some other SM coupling reactions.

20.
Nanoscale Res Lett ; 4(7): 724-731, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20596480

RESUMEN

The significant effect of the feeding mode on the morphology and size distribution of the hydrothermal synthesized MgBO(2)(OH) is investigated, which indicates that, slow dropping rate (0.5 drop s(-1)) and small droplet size (0.02 mL d(-1)) of the dropwise added NaOH solution are favorable for promoting the one-dimensional (1D) preferential growth and thus enlarging the aspect ratio of the 1D MgBO(2)(OH) nanostructures. The joint effect of the low concentration of the reactants and feeding mode on the hydrothermal product results in the head-to-head coalesced MgBO(2)(OH) nanowires with a length of 0.5-9.0 mum, a diameter of 20-70 nm, and an aspect ratio of 20-300 in absence of any capping reagents/surfactants or seeds.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...