Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Planta ; 256(4): 64, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36029339

RESUMEN

MAIN CONCLUSION: Stomatal density and guard cell length of 274 global core germplasms of rapeseed reveal that the stomatal morphological variation contributes to global ecological adaptation and diversification of Brassica napus. Stomata are microscopic structures of plants for the regulation of CO2 assimilation and transpiration. Stomatal morphology has changed substantially in the adaptation to the external environment during land plant evolution. Brassica napus is a major crop to produce oil, livestock feed and biofuel in the world. However, there are few studies on the regulatory genes controlling stomatal development and their interaction with environmental factors as well as the genetic mechanism of adaptive variation in B. napus. Here, we characterized stomatal density (SD) and guard cell length (GL) of 274 global core germplasms at seedling stage. It was found that among the significant phenotypic variation, European germplasms are mostly winter rapeseed with high stomatal density and small guard cell length. However, the germplasms from Asia (especially China) are semi-winter rapeseed, which is characterized by low stomatal density and large guard cell length. Through selective sweep analysis and homology comparison, we identified several candidate genes related to stomatal density and guard cell length, including Epidermal Patterning Factor2 (EPF2; BnaA09g23140D), Epidermal Patterning Factor Like4 (EPFL4; BnaC01g22890D) and Suppressor of LLP1 (SOL1 BnaC01g22810D). Haplotype and phylogenetic analysis showed that natural variation in EPF2, EPFL4 and SOL1 is closely associated with the winter, spring, and semi-winter rapeseed ecotypes. In summary, this study demonstrated for the first time the relation between stomatal phenotypic variation and ecological adaptation in rapeseed, which is useful for future molecular breeding of rapeseed in the context of evolution and domestication of key stomatal traits and global climate change.


Asunto(s)
Brassica napus , Brassica rapa , Domesticación , Ecotipo , Filogenia
2.
BMC Plant Biol ; 20(1): 543, 2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33276730

RESUMEN

BACKGROUND: Transcription factors GATAs are involved in plant developmental processes and respond to environmental stresses through binding DNA regulatory regions to regulate their downstream genes. However, little information on the GATA genes in Brassica napus is available. The release of the reference genome of B. napus provides a good opportunity to perform a genome-wide characterization of GATA family genes in rapeseed. RESULTS: In this study, 96 GATA genes randomly distributing on 19 chromosomes were identified in B. napus, which were classified into four subfamilies based on phylogenetic analysis and their domain structures. The amino acids of BnGATAs were obvious divergence among four subfamilies in terms of their GATA domains, structures and motif compositions. Gene duplication and synteny between the genomes of B. napus and A. thaliana were also analyzed to provide insights into evolutionary characteristics. Moreover, BnGATAs showed different expression patterns in various tissues and under diverse abiotic stresses. Single nucleotide polymorphisms (SNPs) distributions of BnGATAs in a core collection germplasm are probably associated with functional disparity under environmental stress condition in different genotypes of B. napus. CONCLUSION: The present study was investigated genomic structures, evolution features, expression patterns and SNP distributions of 96 BnGATAs. The results enrich our understanding of the GATA genes in rapeseed.


Asunto(s)
Brassica napus/genética , Factores de Transcripción GATA/genética , Genoma de Planta , Secuencias de Aminoácidos , Brassica napus/clasificación , Mapeo Cromosómico , Cromosomas de las Plantas , Evolución Molecular , Perfilación de la Expresión Génica , Filogenia , Polimorfismo de Nucleótido Simple , Estrés Fisiológico , Sintenía
3.
BMC Plant Biol ; 20(1): 287, 2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32571241

RESUMEN

BACKGROUND: Sucrose non-fermenting 1 related protein kinases (SnRK) play crucial roles in responding to biotic and abiotic stresses through activating protein phosphorylation pathways. However, little information of SnRK genes was available in Brassica napus, one of important oil crops. Recently, the released sequences of the reference genome of B.napus provide a good chance to perform genome-wide identification and characterization of BnSnRK gene family in the rapeseed. RESULTS: Totally 114 SnRK genes distributed on 19 chromosomes were identified in the genome of B.napus and classified into three subfamilies on the basis of phylogenetic analysis and the domain types. According to gene structure and motif composition analysis, the BnSnRK sequences showed obvious divergence among three subfamilies. Gene duplication and synteny between the genomes of the rapeseed and Arabidopsis were also analyzed to provide insights into the evolutionary characteristics of BnSnRK family genes. Cis-element analysis revealed that BnSnRKs may response to diverse environmental stresses. Moreover, the expression patterns of BnSnRKs in various tissues and under diverse abiotic stresses were distinct difference. Besides, Single Nucleotide Polymorphisms (SNP) distribution analysis suggests the function disparity of BnSnRK family genes in different genotypes of the rapeseed. CONCLUSION: We examined genomic structures, evolution features, expression patterns and SNP distribution of 114 BnSnRKs. The results provide valuable information for functional characterization of BnSnRK genes in future studies.


Asunto(s)
Brassica napus/enzimología , Brassica napus/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencias de Aminoácidos , Cromosomas de las Plantas , Duplicación de Gen , Genes de Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas , Estrés Fisiológico , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...