Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biosensors (Basel) ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38667196

RESUMEN

Marine biotoxins (MBs), harmful metabolites of marine organisms, pose a significant threat to marine ecosystems and human health due to their diverse composition and widespread occurrence. Consequently, rapid and efficient detection technology is crucial for maintaining marine ecosystem and human health. In recent years, rapid detection technology has garnered considerable attention for its pivotal role in identifying MBs, with advancements in sensitivity, specificity, and accuracy. These technologies offer attributes such as speed, high throughput, and automation, thereby meeting detection requirements across various scenarios. This review provides an overview of the classification and risks associated with MBs. It briefly outlines the current research status of marine biotoxin biosensors and introduces the fundamental principles, advantages, and limitations of optical, electrochemical, and piezoelectric biosensors. Additionally, the review explores the current applications in the detection of MBs and presents forward-looking perspectives on their development, which aims to be a comprehensive resource for the design and implementation of tailored biosensors for effective MB detection.


Asunto(s)
Organismos Acuáticos , Técnicas Biosensibles , Toxinas Marinas , Humanos , Organismos Acuáticos/química , Técnicas Biosensibles/métodos , Toxinas Marinas/análisis
2.
Food Chem ; 450: 139343, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631212

RESUMEN

Ultrasound-assisted freezing (UAF) is a clean technique for meat cryoprotections; however, its effectiveness is still limited compared to conventional cryoprotectants, e.g., sugars, polyols, especially at high dosages. To resolve this problem, a synergistic cryoprotection strategy was developed in this study. Adenosine monophosphate (AMP), an adenosine-type food additive, was introduced into frozen surimi at a considerably reduced content (0.08%), yet substantially enhanced the efficiency of UAF to comparable levels of commercial cryoprotectant (4% sucrose with 4% sorbitol). Specifically, UAF/AMP treatment retarded denaturation of surimi myofibrillar protein (MP) during 60-day frozen storage, as evidenced by its increased solubility, Ca2+-ATPase activity, sulfhydryl content, declined surface hydrophobicity, particle size, and stabilized protein conformation. Gels of UAF/AMP-treated surimi also demonstrated more stabilized microstructures, uniform water distributions, enhanced mechanical properties and water-holding capacities. This study provided a feasible approach to boost the cryoprotective performance of UAF, thus expanding its potential applications in frozen food industry.


Asunto(s)
Adenosina Monofosfato , Crioprotectores , Productos Pesqueros , Congelación , Crioprotectores/química , Crioprotectores/farmacología , Animales , Productos Pesqueros/análisis , Adenosina Monofosfato/química , Conservación de Alimentos/métodos , Conservación de Alimentos/instrumentación , Geles/química , Proteínas de Peces/química , Solubilidad
3.
Opt Express ; 32(4): 5056-5071, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439242

RESUMEN

Quantum random number generator (QRNG) utilizes the intrinsic randomness of quantum systems to generate completely unpredictable and genuine random numbers, finding wide applications across many fields. QRNGs relying on the phase noise of a laser have attracted considerable attention due to their straightforward system architecture and high random number generation rates. However, traditional phase noise QRNGs suffer from a 50% loss of quantum entropy during the randomness extraction process. In this paper, we propose a phase-reconstruction quantum random number generation scheme, in which the phase noise of a laser is reconstructed by simultaneously measuring the orthogonal quadratures of the light field using balanced detectors. This enables direct discretization of uniform phase noise, and the min-entropy can achieve a value of 1. Furthermore, our approach exhibits inherent robustness against the classical phase fluctuations of the unbalanced interferometer, eliminating the need for active compensation. Finally, we conducted experimental validation using commercial optical hybrid and balanced detectors, achieving a random number generation rate of 1.96 Gbps at a sampling rate of 200 MSa/s.

4.
Animals (Basel) ; 14(4)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38396579

RESUMEN

Poor tenderness of camel meat has seriously hampered the development of the camel meat industry. This study investigated the effects of muscle fiber composition and ageing time on meat quality, glycolytic potential, and glycolysis-related enzyme activities. Muscle samples of the longissimus thoracis (LT), psoas major (PM), and semitendinosus (ST) were collected from eight 8-10 year old Sonid Bactrian camels (females). Muscle fiber composition was examined by ATPase staining and immunohistochemistry. Meat quality indexes, glycolytic potential, and activities of major glycolytic enzymes were examined at 4 °C aging for 1, 6, 24, 72, and 120 h. The results showed that LT was mainly composed of type IIb muscle fibers, whereas PM and ST were mainly composed of type I muscle fibers. The PCR results of the myosin heavy chain (MyHC) were consistent with the ATPase staining results. During aging, the shear force of LT muscle was always greater than that of PM and ST, and its glycolysis was the strongest; type IIa, IIb, and IIx muscle fibers were positively correlated with muscle shear force and glycolysis rate, and type I muscle fibers were significantly and negatively correlated with the activities of the key enzymes of glycolysis within 6 h. The results showed that the muscle fibers of LT muscle had the greatest glycolysis capacity. These results suggest that an excessive type IIb muscle fiber number percentage and area in camel meat accelerated the glycolysis process, but seriously affected the sensory profile of the camel meat. The results of this study provide directions for the camel industry when addressing the poor tenderness of camel meat.

5.
Anal Chim Acta ; 1288: 342196, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220264

RESUMEN

Albendazole (ABZ), a benzimidazole-based anthelmintic, is widely used to treat helminth infections. The extensive and improper use of ABZ may cause drug residues in animal-origin food and anthelmintics resistance, which potentially threaten human health. Meanwhile, albendazole sulfoxide (ABZSO), a metabolite of ABZ, also exhibits toxic effects. Therefore, the detection of ABZ and ABZSO in animal-derived food is significantly necessary. Herein, a dual-emission europium fluorescent sensor (EuUHC-30) was rationally designed and constructed. EuUHC-30 exhibits high selectivity and sensitivity towards ABZ and ABZSO with a detection limit of 0.10 and 0.13 µM, respectively. Furthermore, EuUHC-30 was successfully applied for quantification of ABZ and ABZSO in milk and pig kidney, which were verified by HPLC analysis. Moreover, a smartphone-assisted EuUHC-30 fluorescent paper sensor was fabricated for the practical determination of ABZ and ABZSO in real food. Overall, this work provides a visual, rapid, and intelligent method for the detection of ABZ and ABZSO in animal-origin food.


Asunto(s)
Antihelmínticos , Estructuras Metalorgánicas , Animales , Humanos , Porcinos , Albendazol , Antihelmínticos/metabolismo , Antihelmínticos/uso terapéutico , Cromatografía Líquida de Alta Presión
6.
Food Chem ; 439: 138143, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103490

RESUMEN

The use of frozen dough is an intensive food-processing practice that contributes to the development of chain operations in the bakery industry. However, the fermentation activity of yeasts in frozen dough can be severely damaged by freeze-thaw stress, thereby degrading the final bread quality. In this study, chickpea protein hydrolysate significantly improved the quality of steamed bread made from frozen dough while enhancing the yeast survival rate and maintaining yeast cell structural integrity under freeze-thaw stress. The mechanism underlying this protective role of chickpea protein hydrolysate was further investigated by untargeted metabolomics analysis, which suggested that chickpea protein hydrolysate altered the intracellular metabolites associated with central carbon metabolism, amino acid synthesis, and lipid metabolism to improve yeast cell freeze-thaw tolerance. Therefore, chickpea protein hydrolysate is a promising natural antifreeze component for yeast cryopreservation in the frozen dough industry.


Asunto(s)
Cicer , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Cicer/metabolismo , Hidrolisados de Proteína/metabolismo , Congelación , Proteínas de Saccharomyces cerevisiae/metabolismo , Fermentación , Pan/análisis
7.
J Sci Food Agric ; 104(2): 643-654, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37647552

RESUMEN

BACKGROUND: Interface modification driven by supramolecular self-assembly has been accepted as a valuable strategy for emulsion stabilization enhancement. However, there has been a dearth of comparative research on the effect of simple complexation and assembly from the perspective of the responsible mechanism. RESULTS: The present study selected zein and tannic acid (TA) as representative protein and polyphenol modules for self-assembly (coined as TA-modified zein particle and TA-zein complex particle) to explore the surface properties and interfacial behavior, as well as the stability of constructed Pickering emulsions to obtain the regulation law of different modification methods on the interfacial behavior of colloidal particles. The results demonstrated that TA-modified zein colloidal particles potentially improved the emulsifying properties. When the TA concentration was 3 mmol L-1 , the optimized TA-modified zein particle was nano-sized (109.83 nm) and had advantageous interfacial properties, including sharply reduced surface hydrophobicity, as well as a low diffusion rate at the oil/water interface. As a result, the shelf life of Pickering emulsion containing 50% oil phase was extended to 90 days. CONCLUSION: Through multi-angled research on the properties of the interfacial membrane, improvement of emulsion stability was a result of the formation of viscoelastic interfacial film that resulted from the decrease of absorption rate between particles and interface. Using refined regulation to investigate the role of different sample preparation methods from a mechanistic perspective. Overall, the present study has provided a reference for TA to regulate the surface properties and interface behavior of zein colloidal particles, enriched the understanding of colloidal interface assembly, and provided a theoretical basis for the quality control of interface-oriented food systems. © 2023 Society of Chemical Industry.


Asunto(s)
Zeína , Emulsiones/química , Zeína/química , Tamaño de la Partícula , Polifenoles
8.
Food Res Int ; 169: 112871, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254320

RESUMEN

Chickpea protein (CP) and its enzymatic hydrolysates are one of the most widely consumed pulse ingredients manifesting versatile applications in food industry, such as binders, emulsifiers, and meat protein substitutes. Other than those well-known functionalities, however, the use of CP as a cryoprotectant remained unexplored. In this study, we prepared the chickpea protein hydrolysate (CPH) and investigated its cryoprotective effects to frozen surimi in terms of the protein structure integrity and gelling behaviors. Results indicated that CPH could inhibit myofibrillar protein (MP) denaturation and oxidation during the freeze-thaw cycling, as evidenced by their increased solubility, Ca2+-ATPase activity, sulfhydryl concentration, and declined content of disulfide bonds, carbonyl concentration and surface hydrophobicity. Freezing-induced changes on MP secondary structures were also retarded. Moreover, gels prepared from CPH-protected frozen surimi demonstrated more stabilized microstructure, uniform water distribution, enhanced elasticity, gel strength and water holding capacity. The CPH alone, at a reducing addition content of 4% (w/w), exhibited comparable cryoprotective performance to that of the commercial formulation (4% sucrose and 4% sorbitol). Therefore, this study provides scientific insights for development of pulse proteins as novel and high-performance food cryoprotectants.


Asunto(s)
Cicer , Crioprotectores , Congelación , Crioprotectores/farmacología , Crioprotectores/química , Hidrolisados de Proteína/química , Proteínas , Geles , Agua
9.
Food Res Int ; 169: 112944, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254368

RESUMEN

Frequently occurrence of food safety incidents has induced global concern over food safety. To ensure food quality and safety, an increasing number of rapid and sensitive analytical methods have been developed for analysis of all kinds of food composition and contaminants. As one of the high-profile analytical techniques, Raman spectroscopy has been widely applied in food analysis with simple, rapid, sensitive, and nondestructive detection performance. Research on Raman techniques is a direction of great interest to many fields, especially in food safety. Hence, it is crucial to gain insight into recent advances on the use of Raman-based techniques in food safety applications. In this review, we introduce Raman techniques from normal Raman spectroscopy to developed ones (e.g., surface enhanced Raman scattering (SERS), spatially offset Raman spectroscopy (SORS), surface-enhanced spatially offset Raman spectroscopy (SESORS)), in view of their history and development, principles, design, and applications. In addition, future challenges and trends of these techniques are discussed regarding to food safety.


Asunto(s)
Inocuidad de los Alimentos , Espectrometría Raman , Espectrometría Raman/métodos , Calidad de los Alimentos
10.
J Chem Inf Model ; 63(10): 2948-2959, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37125691

RESUMEN

Predicting solubility of small molecules is a very difficult undertaking due to the lack of reliable and consistent experimental solubility data. It is well known that for a molecule in a crystal lattice to be dissolved, it must, first, dissociate from the lattice and then, second, be solvated. The melting point of a compound is proportional to the lattice energy, and the octanol-water partition coefficient (log P) is a measure of the compound's solvation efficiency. The CCDC's melting point dataset of almost one hundred thousand compounds was utilized to create widely applicable machine learning models of small molecule melting points. Using the general solubility equation, the aqueous thermodynamic solubilities of the same compounds can be predicted. The global model could be easily localized by adding additional melting point measurements for a chemical series of interest.


Asunto(s)
Aprendizaje Automático , Agua , Solubilidad , Agua/química , Octanoles/química
11.
Food Chem ; 407: 135136, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36502729

RESUMEN

Chickpea protein (CP) is an exceptional nutrient-dense pulse protein prevailing in the development of plant-based foods. However, its relatively low solubility, compared to other legume proteins, hinders the practical uses of CP in food matrix. To resolve this problem, pea protein (PP), another popular pulse protein, was co-assembled with CP to form a binary complex during the alkaline pH-shifting process. Results indicated that the complexed CP exhibited significantly increased solubility to that of the pristine protein (more than 50%), whose aqueous stability was also enhanced against different environmental stresses (pH, salt, heat/frozen treatment, and centrifugation). Structural and morphology analysis confirmed the interplay between unfolded CP and PP during pH shifting, which enabled their resistance to acid-induced structural over-folding. Our experiments that induce the co-assembling of two pulse proteins provide a novel routine and scientific basis for tailoring CP functionalities, as well as the formulation of pulse protein-based products.


Asunto(s)
Cicer , Fabaceae , Cicer/química , Proteínas en la Dieta/metabolismo
12.
Foods ; 13(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38201034

RESUMEN

The ever-increasing world population and environmental stress are leading to surging demand for nutrient-rich food products with cleaner labeling and improved sustainability. Plant proteins, accordingly, are gaining enormous popularity compared with counterpart animal proteins in the food industry. While conventional plant protein sources, such as wheat and soy, cause concerns about their allergenicity, peas, beans, chickpeas, lentils, and other pulses are becoming important staples owing to their agronomic and nutritional benefits. However, the utilization of pulse proteins is still limited due to unclear pulse protein characteristics and the challenges of characterizing them from extensively diverse varieties within pulse crops. To address these challenges, the origins and compositions of pulse crops were first introduced, while an overarching description of pulse protein physiochemical properties, e.g., interfacial properties, aggregation behavior, solubility, etc., are presented. For further enhanced functionalities, appropriate modifications (including chemical, physical, and enzymatic treatment) are necessary. Among them, non-covalent complexation and enzymatic strategies are especially preferable during the value-added processing of clean-label pulse proteins for specific focus. This comprehensive review aims to provide an in-depth understanding of the interrelationships between the composition, structure, functional characteristics, and advanced modification strategies of pulse proteins, which is a pillar of high-performance pulse protein in future food manufacturing.

13.
Micromachines (Basel) ; 13(12)2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36557478

RESUMEN

With the development of microelectronic technology, the integration of electronic systems is increasing continuously. Electronic systems are becoming more and more sensitive to external electromagnetic environments. Therefore, to improve the robustness of radio frequency (RF) microwave circuits, it is crucial to study the reliability of semiconductor devices. In this paper, the temporary failure mechanism of a gallium arsenide (GaAs) pseudomorphic high electron mobility transistor (pHEMT) in a navigation low-noise amplifier (LNA) under the jamming of ultra-wideband (UWB) electromagnetic pulses (EMP) is investigated. The failure process and failure mechanism of pHEMT under UWB EMP are elaborated by analyzing the internal electric field, current density, and temperature distribution. In detail, as the amplitude of UWB EMP increases, the output current, carrier mobility, and transconductance of pHEMT decrease, eventually resulting in gain compression. The injection experiment on LNA, which effectively verified the failure mechanism, indicates that the gain of pHEMT is suppressed instantaneously under the jamming of UWB EMP and the navigation signal cannot be effectively amplified. When UWB EMP amplitude increases to nearly 10 V, the BeiDou Navigation Satellite System (BDS) carrier signal is suppressed by nearly 600 ns. Experimental results accord well with the simulation of our model. UWB EMP jamming is a new and efficient type of electromagnetic attack system based on the device saturation effect. The performance degradation and failure mechanism analysis contribute to RF reinforcement design.

14.
Sensors (Basel) ; 22(23)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36501761

RESUMEN

In this paper, time-frequency transfer and positioning experiments with signal coexistence in the BDS system were conducted using the four types of open service signals of the BDS-3 satellite (B1I, B1C, B2a, and B3I), as well as the B2I signals broadcast by the BDS-2 satellites. The experiments used the single-frequency PPP (precise point positioning) method. The experiment validated a modified version of the group and phase ionospheric correction (GRAPHIC) technique. The results demonstrate that, with a single frequency, 18 selected stations may provide positioning results accurate to within a few decimeters. The positioning accuracy of five frequencies signals is improved by 40.4%, 32.2%, 80.3%, 12.4%, and 10.3% when compared to the positioning accuracy of the same signals when using the general observation approach. Currently, the frequency stability may be as precise as dual frequencies with BDS.

15.
Neural Netw ; 156: 67-80, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36242835

RESUMEN

Transformers have achieved great success in many artificial intelligence fields, such as computer vision (CV), audio processing and natural language processing (NLP). In speech emotion recognition (SER), transformer-based architectures usually compute attention in a token-by-token (frame-by-frame) manner, but this approach lacks adequate capacity to capture local emotion information and is easily affected by noise. This paper proposes a novel SER architecture, referred to as block and token self-attention (BAT), that splits a mixed spectrogram into blocks and computes self-attention by combining these blocks with tokens, which can alleviate the effect of local noise while capturing authentic sentiment expressions. Furthermore, we present a cross-block attention mechanism to facilitate information interaction among blocks while integrating a frequency compression and channel enhancement (FCCE) module to smooth the attention biases between blocks and tokens. BAT achieves 73.2% weighted accuracy (WA) and 75.2% unweighted accuracy (UA) on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) dataset, surpassing the results of previously developed state-of-the-art approaches with the same dataset partitioning operation. Further experimental results reveal that our proposed method is also well suited for cross-database and cross-domain tasks, achieving 89% WA and 87.4% UA on Emo-DB and producing a top-1 recognition accuracy of 88.32% with only 15.01 Mb of parameters on the CIFAR-10 image dataset under a scenario with no data augmentation or pretraining.


Asunto(s)
Inteligencia Artificial , Habla , Emociones , Redes Neurales de la Computación , Aprendizaje Automático
16.
Foods ; 11(3)2022 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-35159506

RESUMEN

Carboxymethyl chitosan (CMCh) is an ampholytic chitosan derivative that manifests versatile applications in food industry, such as antibacterial ingredients and nutritional additives. However, its use as a cryoprotectant remains under-researched. In this study, the cryoprotective effect of CMCh oligosaccharide (CMCO) on frozen surimi (silver carp) was systematically investigated in terms of protein structures, gelling behaviors, and sensory qualities. CMCO (0.6%) was incorporated in the surimi before frozen storage (-18 °C for 60 days) while the commercial cryoprotectant (4% sucrose, 4% sorbitol) was used as a positive control. Results indicated that CMCO could inhibit the freezing-induced denaturation of myofibrillar protein, whose values of solubility, Ca2+-ATPase and sulfhydryl content were 24.8%, 64.7%, and 17.1% higher than the nonprotected sample, respectively, while the surface hydrophobicity was 21.6% lower. Accordingly, CMCO stabilized microstructure of the surimi gels associated with improved gel strength, viscoelasticity, water-holding capacities, and whiteness. Moreover, the cryoprotective effect of CMCO with higher degree of carboxymethyl substitution (DS: 1.2) was more pronounced than that of low-DS-CMCO (DS: 0.8). Frozen surimi treated with high-DS-CMCO achieved competitive gelling properties and sensory acceptability to those with the commercial counterpart. This study provided scientific insights into the development of ampholytic oligosaccharides as food cryoprotectants.

17.
Food Res Int ; 151: 110863, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34980399

RESUMEN

Carboxymethyl chitosan (CMCh), an ampholetic chitosan derivative, has found broad applications in the food industry. However, its cryo-protective properties remained less explored compared to other viscous polysaccharides, such as carboxymethyl cellulose, carrageenan etc., which have been widely utilized as frozen food additives. In this study, we investigated the effect of CMCh addition to frozen dough in terms of water state, protein structure, and the textural properties of prepared frozen dumpling wrappers. Results indicated that CMCh restricted the water migration in dough and delayed protein deterioration during frozen storage. Specifically, the content of freezable water in dough was reduced and the water distribution became more uniform as reflected by DCS and LF-NMR analysis. CMCh also stabilized disulfide bond and secondary structures of the protein, leading to inhibition of dough rheology changes. Accordingly, the obtained frozen dumplings wrappers demonstrated decreased cracking rate and water loss, and improved textural properties. Moreover, CMCh with higher degree of carboxymethyl substitution (DS: 1.2, CMCh-B) exhibited better cryo-protective effects compared to CMCh of lower DS (DS: 0.8, CMCh-A). Our study provides novel insights and scientific basis for the development of ampholetic polysaccharides as high-performance food additives.


Asunto(s)
Quitosano , Agua , Pan , Congelación , Proteínas
18.
Foods ; 12(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36613295

RESUMEN

The usage of tea polyphenols (TPs) as a natural food additive into non-fermented frozen dough (NFFD) has rarely been investigated, and results have been controversial. Hence, this study investigated the effect of TPs at various levels (0, 0.5, 1, and 2%) on the quality of NFFD stored from 0 to 4 weeks. The rheological characteristics, water state, protein, and its microstructure were analyzed by DSC, LF-NMR, SDS-PAGE, FT-IR, and SEM, respectively. Results showed that the 0.5% TP group delayed the deterioration of protein and inhibited the water migration in dough throughout the whole frozen storage period. In addition, the 0.5% TP group enhanced the rheological properties of NFFD and stabilized the sulfhydryl content and the secondary structure in the gluten network. On the contrary, opposite phenomena were found in the 1 and 2% TP groups, which might be due to the induction of excess hydroxyl groups from TPs. In conclusion, our results suggested that a proper addition of TPs, but not an excessive amount (>1%), exhibited beneficial effects in maintaining the quality of NFFD during the 4-week frozen storage. Moreover, this paper elucidated the mechanism of TPs in influencing the protein structure and water state of NFFD during storage and provided new insight into its application in dough-based foods.

19.
Adv Mater ; 34(5): e2106316, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34773418

RESUMEN

In all-small-molecule organic solar cells (ASM-OSCs), a high short-circuit current (Jsc ) usually needs a small phase separation, while a high fill factor (FF) is generally realized in a highly ordered packing system. However, small domain and ordered packing always conflicted each other in ASM-OSCs, leading to a mutually restricted Jsc and FF. In this study, alleviation of the previous dilemma by the strategy of obtaining simultaneous good miscibility and ordered packing through modulating homo- and heteromolecular interactions is proposed. By moving the alkyl-thiolation side chains from the para- to the meta-position in the small-molecule donor, the surface tension and molecular planarity are synchronously enhanced, resulting in compatible properties of good miscibility with acceptor BTP-eC9 and strong self-assembly ability. As a result, an optimized morphology with multi-length-scale domains and highly ordered packing is realized. The device exhibits a long carrier lifetime (39.8 µs) and fast charge collection (15.5 ns). A record efficiency of 16.2% with a high FF of 75.6% and a Jsc of 25.4 mA cm-2 in the ASM-OSCs is obtained. These results demonstrate that the strategy of simultaneously obtaining good miscibility with high crystallinity could be an efficient photovoltaic material design principle for high-performance ASM-OSCs.

20.
Nanotechnology ; 33(6)2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700301

RESUMEN

As the power conversion efficiencies of organic solar cells (OSCs) have been improved continuously in recent years, more attention will be paid to the industrial production and practical application of OSCs. However, there are still many problems to be solved in the process of large-scale production. Among them, reducing the costs of the materials and enhancing the film-thickness tolerance of the active layer are the two key points. Therefore, it is urgent to develop organic semiconductor materials which are easy to synthesize and suitable for the construction of high-efficiency, thick-film OSCs. In this work, we have focused on the (E)-2-[2-(thiophen-2-yl)vinyl]thiophene (TVT) unit because of its unique coplanar structure. And we noticed that TVT was mostly used as an electron-donating unit in the previous reports. However, we have modified TVT into electron-withdrawing unit by the introduction of fluorine atoms/ester groups. And two new donor-acceptor (D-A) copolymers have been obtained by combining the electron-withdrawing TVT unit with benzo[2,1-b:4,5-b']dithiophene (BDT) unit. Among them, the polymer based on the ester modified TVT unit presents excellent photovoltaic performance by virtue of its good solubility and preferable molecular stacking mode, and the corresponding devices also show extraordinarily high-thickness tolerance. The emergence of this new electron-withdrawing TVT unit will undoubtedly further promote the development of low-cost, high-efficiency, thick-film OSCs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...