RESUMEN
The phenomenon of multicolor afterglow emission has attracted considerable attention in information encryption, bioimaging, and sensing. Consequently, there is a growing demand for the development of multicolor afterglow and phosphorescence switching methods utilizing carbon dot (CD) materials. Herein, multicolor room-temperature phosphorescence (RTP) emission in CD-based materials (PM-CD@BA composite) was achieved by developing multiple emission centers and tuning the excitation wavelength. The color of the afterglow observed in this composite covered from the deep-blue to the green region. The experimental results reveal that under heating treatment, the CDs embedded in inorganic boric acid/B2O3 matrix materials and a rigid framework generated in the composite system effectively suppressed the nonradiative transition and promoted the RTP emission. Finally, high-resolution multilevel RTP 2D code data encryption was realized by inkjet printing technology. The developed concepts of information encryption and anticounterfeiting exhibit the significant potential of CD-based afterglow materials applied in advanced optical applications.
RESUMEN
Dendrite growth and interfacial side reactions on Zn anode seriously affect the safety and service life of Zn ions batteries. Interface engineering is an effective way to solve these problems. Here, a liquid metal-ZnO composite coating with high ionic conductivity is creatively designed, which not only reduces the Zn2+ diffusion barrier but also increases the hydrogen evolution overpotential, thereby eliminating dendrite growth behavior and corrosion on the modified Zn anode. Moreover, its unique structure induces Zn deposition into the inner of coating, which can effectively avoid the volume expansion in the deposit layer of Zn anode. Therefore, it can cycle for 3 000 h at an ultra-small polarization of 28 mV at 1 mA cm-2, and the microbattery assembled in combination with the MnO2 cathode also maintains 2 000 cycles with high Coulomb efficiency, providing a general idea for the development of the next generation of rechargeable metal batteries.
RESUMEN
Bismuth-based photocatalytic materials have been widely used in the field of photocatalysis in recent years due to their unique layered structure. However, single bismuth-based photocatalytic materials are greatly limited in their photocatalytic performance due to their poor response to visible light and easy recombination of photogenerated charges. At present, constructing semiconductor heterojunctions is an effective modification method that improves quantum efficiency by promoting the separation of photogenerated electrons and holes. In this study, the successful preparation of an In2O3/Bi2WO6 (In2O3/BWO) II-type semiconductor heterojunction composite material was achieved. XRD characterization was performed to conduct a phase analysis of the samples, SEM and TEM characterization for a morphology analysis of the samples, and DRS and XPS testing for optical property and elemental valence state analyses of the samples. In the II-type semiconductor junction system, photogenerated electrons (e-) on the In2O3 conduction band (CB) migrate to the BWO CB, while holes (h+) on the BWO valence band (VB) transfer to the In2O3 VB, promoting the separation of photoinduced charges, raising the quantum efficiency. When the molar ratio of In2O3/BWO is 2:6, the photocatalytic degradation degree of rhodamine B (RhB) is 59.4% (44.0% for BWO) after 60 min illumination, showing the best photocatalytic activity. After four cycles, the degradation degree of the sample was 54.3%, which is 91.4% of that of the first photocatalytic degradation experiment, indicating that the sample has good reusability. The XRD results of 2:6 In2O3/BWO before and after the cyclic experiments show that the positions and intensities of its diffraction peaks did not change significantly, indicating excellent structural stability. The active species experiment results imply that h+ is the primary species. Additionally, this study proposes a mechanism for the separation, migration, and photocatalysis of photoinduced charges in II-type semiconductor junctions.
RESUMEN
Purpose: There are insufficient data about the optimal treatment for older patients with recurring medium or large hepatocellular carcinoma (HCC). The study intended to assess the effect of transcatheter arterial chemoembolization combined with microwave ablation (TACE-MWA) in an elderly cohort through a retrospective analysis. Methods: From 2011 to 2018, a cohort of individuals (age ≥70 years) with recurrent HCC tumors ranging from 3.1 cm to 7 cm underwent either a combination treatment of TACE and MWA (n = 43) or surgical intervention (n = 33). Using the Inverse Probability of Treatment Weighting (IPTW) technique, factors of disease-free survival (DFS), overall survival (OS), and rates of major adverse events were analyzed, retrospectively. Results: The group that underwent surgery had a greater history of alcohol use before treatment (P= 0.001), as well as a higher Barcelona Clinic Liver Cancer (BCLC) stage for the primary tumor before treatment (P= 0.014) and a higher primary tumor location before treatment (P= 0.045). The TACE-MWA group had DFS rates of 86.2%, 68.8%, and 60.4% at 1, 3, and 5 years, while the surgery group had rates of 53.0%, 42.2%, and 25.8% at the same time points. In the TACE-MWA treatment group, survival rates at 1 year, 3 years, and 5 years post-treatment were recorded as 93.0%, 80.8%, and 65.7%, respectively, while in the surgery group, they were 62.7%, 46.9%, and 42.6%. In the univariate analysis using IPTW, the type of treatment was found to have a significant correlation with disease progression (hazard ratio [HR] 0.41, 95% CI 0.20-0.86, P=0.017). IPTW multivariate analysis showed that treatment modality (HR, 0.35; 95% CI, 0.17 to 0.79; P= 0.011) was the only significant prognostic factor for OS. Conclusion: In elderly patients with recurrent 3.1 cm≤ HCC ≤ 7 cm, TACE-WMA was superior to surgery in the respects of DFS and OS.
RESUMEN
Neurofilament light chain (NfL) levels were reliable biomarkers of neurodegeneration in Parkinson's disease (PD). Lipoprotein-related Phospholipase A2(Lp-PLA2) levels have also been increasingly studied in PD. We aimed to explore the association of plasma NfL and Lp-PLA2 with the diagnosis, motor subtypes and disease severity of PD. Plasma NfL and Lp-PLA2 were assayed separately in 106 participants (74 PD and 32 healthy controls, HC). The motor subtypes of PD were classified according to the MDS-UPDRS components, and motor and non-motor manifestations of patients were also evaluated. Subsequently, correlation analyses were performed. The plasma NfL levels were higher in the PD than HC, and were positively correlated with age, UPDRS II, UPDRS III and the modified Hoehn and Yahr staging scale (H&Y stage) in the PD. Moreover, plasma Lp-PLA2 levels were lower in the PD than HC, and were positively correlated with Parkinson's Disease Quality of Life Questionnaire (PDQ-39) in the PD. For further distinguishing tremor-dominant (TD) from postural instability and gait difficulty-dominant (PIGD), plasma Lp-PLA2 levels were higher in the TD than PIGD, but there was no significant difference in NfL. plasma Lp-PLA2 levels were positively correlated with UPDRS I, Hamilton Anxiety Rating Scale (HAMA) and PDQ-39 in the TD. These resultssuggest that NfL and Lp-PLA2 may be potential biomarkers for the diagnosis of PD. We first demonstrated the potential utility of plasma Lp-PLA2 in differentiating motor subtypes. These findings deserve further evidence in larger PD cohorts.
RESUMEN
The identification of predictors for immunotherapy is often hampered by the absence of control groups in many studies, making it difficult to distinguish between prognostic and predictive biomarkers. This study presents biomarker analyses from the phase 3 CONTINUUM trial (NCT03700476), the first to show that adding anti-PD-1 (aPD1) to chemoradiotherapy (CRT) improves event-free survival (EFS) in patients with locoregionally advanced nasopharyngeal carcinoma. A dynamic single-cell atlas was profiled using mass cytometry on peripheral blood mononuclear cell samples from 12 pairs of matched relapsing and non-relapsing patients in the aPD1-CRT arm. Using a supervised representation learning algorithm, we identified a Ki67+ proliferating regulatory T cells (Tregs) population expressing high levels of activated and immunosuppressive molecules including FOXP3, CD38, HLA-DR, CD39, and PD-1, whose abundance correlated with treatment outcome. The frequency of these Ki67+ Tregs was significantly higher at baseline and increased during treatment in patients who relapsed compared to non-relapsers. Further validation through flow cytometry (n = 120) confirmed the predictive value of this Treg subset. Multiplex immunohistochemistry (n = 249) demonstrated that Ki67+ Tregs in tumors could predict immunotherapy benefit, with aPD1 improving EFS only in patients with low baseline levels of Ki67+ Tregs. These findings were further validated in the multicenter phase 3 DIPPER trial (n = 262, NCT03427827) and the phase 3 OAK trial of anti-PD-L1 immunotherapy in NSCLC, underscoring the predictive value of Ki67+ Treg frequency in identifying the beneficiaries of immunotherapy and potentially guiding personalized treatment strategies.
Asunto(s)
Biomarcadores de Tumor , Inmunoterapia , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/inmunología , Femenino , Masculino , Carcinoma Nasofaríngeo/inmunología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/patología , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/genética , Adulto , QuimioradioterapiaRESUMEN
Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.
Asunto(s)
Bencidinas , Técnicas Biosensibles , Colorimetría , Cobre , Límite de Detección , Nanopartículas del Metal , Tricotecenos , Zea mays , Tricotecenos/análisis , Tricotecenos/inmunología , Colorimetría/métodos , Cobre/química , Técnicas Biosensibles/métodos , Bencidinas/química , Zea mays/química , Nanopartículas del Metal/química , Triticum/química , Peroxidasa/química , Anticuerpos Inmovilizados/inmunología , Contaminación de Alimentos/análisisRESUMEN
BACKGROUND: The loss of gait automaticity is a key cause of motor deficits in Parkinson's disease (PD) patients, even at the early stage of the disease. Action observation training (AOT) shows promise in enhancing gait automaticity. However, effective assessment methods are lacking. We aimed to propose a novel gait normalcy index based on dual task cost (NIDTC) and evaluate its validity and responsiveness for early-stage PD rehabilitation. METHODS: Thirty early-stage PD patients were recruited and randomly assigned to the AOT or active control (CON) group. The proposed NIDTC during straight walking and turning tasks and clinical scale scores were measured before and after 12 weeks of rehabilitation. The correlations between the NIDTCs and clinical scores were analyzed with Pearson correlation coefficient analysis to evaluate the construct validity. The rehabilitative changes were assessed using repeated-measures ANOVA, while the responsiveness of NIDTC was further compared by t tests. RESULTS: The turning-based NIDTC was significantly correlated with multiple clinical scales. Significant group-time interactions were observed for the turning-based NIDTC (F = 4.669, p = 0.042), BBS (F = 6.050, p = 0.022) and PDQ-39 (F = 7.772, p = 0.011) tests. The turning-based NIDTC reflected different rehabilitation effects between the AOT and CON groups, with the largest effect size (p = 0.020, Cohen's d = 0.933). CONCLUSION: The turning-based NIDTC exhibited the highest responsiveness for identifying gait automaticity improvement by providing a comprehensive representation of motor ability during dual tasks. It has great potential as a valid measure for early-stage PD diagnosis and rehabilitation assessment. Trial registration Chinese Clinical Trial Registry: ChiCTR2300067657.
Asunto(s)
Marcha , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/rehabilitación , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Marcha/fisiología , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Trastornos Neurológicos de la Marcha/fisiopatología , Trastornos Neurológicos de la Marcha/diagnósticoRESUMEN
BACKGROUND: Treatment of brain metastases (BMs) in non-small cell lung cancer (NSCLC) patients, especially those with non-sensitive genetic mutations, is hindered by limited drug delivery through the blood-brain barrier (BBB). This retrospective study explores the efficacy of systemic treatments during brain metastasis to radiotherapy evaluation window in improving patient survival. METHODS: In this retrospective cohort study, we evaluated 209 NSCLC patients with non-sensitive mutations and BMs, treated between 2016 and 2023 at two tertiary medical centers (Chongqing University Cancer Hospital and Guangxi Medical University Cancer Hospital). The patients were divided into three groups, namely chemotherapy alone (C; n = 95), chemotherapy plus immune checkpoint inhibitors (ICIs) (C + I; n = 62), and chemotherapy with ICIs and antiangiogenic therapy (A) (C + I + A; n = 52). Statistical analyses were performed using R software, version 4.3.3. Categorical variables were compared using Fisher's exact test, and survival curves were estimated with the Kaplan-Meier method and compared via the log-rank test. Univariate and multivariate Cox regression models were used to assess factors associated with overall survival (OS). Bayesian model averaging (BMA) was employed to address model uncertainty and improve result robustness. Subgroup analyses evaluated treatment-related mortality risk. RESULTS: From an initial cohort of 658 NSCLC patients with BMs, 209 were analyzed with a median age of 59; the majority were male (80.9%) and diagnosed with adenocarcinoma (78.9%). Univariate analysis identified significant variables influencing outcomes, including BMs radiotherapy EQD2, BMs count, local thoracic treatment, BMs radiotherapy field, intracranial response, and systemic treatment post-BMs diagnosis. The C + I + A regimen significantly improved median OS to 23.6 months compared to 11.4 months with C and 16.2 months with C + I, with a hazard ratio (HR) of 0.60 (95% CI: 0.43-0.82; P < 0.0001). The two-year OS rate was highest in the C + I + A group at 38.5%, versus 10.5% in C and 20.4% in C + I (P < 0.001). Cox regression and BMA analyses confirmed the stability of BMA in providing HR estimates, yielding area under the curve (AUC) values of 0.785 for BMA and 0.793 for the Cox model, with no significant difference in predictive performance. Subgroup analysis revealed a 71% mortality risk reduction with C + I + A (HR: 0.29; 95% CI: 0.18-0.47; P < 0.0001), showing consistent benefits regardless of patient sex, BMs count, extracranial metastases presence, and local thoracic treatments. Treatment sequence analysis indicated a median OS of 33.4 months for patients starting with A, though not statistically significant (HR: 0.59; P = 0.36). The overall incidence of radiation-induced brain injury was low at 3.3%, with rates in the C, C + I, and C + I + A groups being 3.2%, 4.8%, and 1.9%, respectively (P = 0.683). CONCLUSION: Our study demonstrates the significant benefit of the C + I + A combination therapy in improving OS and reducing mortality risk in NSCLC patients with non-sensitive gene-mutated BMs. The sequential administration of A followed by ICIs shows a promising synergistic effect with cranial radiotherapy, highlighting the potential for optimized treatment sequencing. These findings emphasize the efficacy of tailored combination therapies in complex oncological care and suggest that our approach could lead to meaningful improvements in clinical outcomes for this challenging patient population.
Asunto(s)
Inhibidores de la Angiogénesis , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Estudios Retrospectivos , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/tratamiento farmacológico , Masculino , Femenino , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Persona de Mediana Edad , Inhibidores de la Angiogénesis/uso terapéutico , Anciano , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , AdultoRESUMEN
PURPOSE: To explore the influence of circulating lymphocyte subsets, serum markers, clinical factors, and their impact on overall survival (OS) in locally advanced nasopharyngeal carcinoma (LA-NPC). Additionally, to construct a nomogram predicting OS for LA-NPC patients using independent prognostic factors. METHODS: A total of 530 patients with LA-NPC were included in this study. In the training cohort, Cox regression analysis was utilized to identify independent prognostic factors, which were then integrated into the nomogram. The concordance index (C-index) was calculated for both training and validation cohorts. Schoenfeld residual analysis, calibration curves, and decision curve analysis (DCA) were employed to evaluate the nomogram. Kaplan-Meier methods was performed based on risk stratification using the nomogram. RESULTS: A total of 530 LA-NPC patients were included. Multivariate Cox regression analysis revealed that the circulating CD8+T cell, platelet-to-lymphocyte ratio (PLR), lactate dehydrogenase (LDH), albumin (ALB), gender, and clinical stage were independent prognostic factors for LA-NPC (p < 0.05). Schoenfeld residual analysis indicated overall satisfaction of the proportional hazards assumption for the Cox regression model. The C-index of the nomogram was 0.724 (95% CI: 0.669-0.779) for the training cohort and 0.718 (95% CI: 0.636-0.800) for the validation cohort. Calibration curves demonstrated good correlation between the model and actual survival outcomes. DCA confirmed the clinical utility enhancement of the nomogram over the TNM staging system. Significant differences were observed in OS among different risk stratifications. CONCLUSION: Circulating CD8+ T cell, PLR, LDH, ALB, gender and clinical stage are independent prognostic factors for LA-NPC. The nomogram and risk stratification constructed in this study effectively predict OS in LA-NPC.
Asunto(s)
Linfocitos T CD8-positivos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Nomogramas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Carcinoma Nasofaríngeo/mortalidad , Carcinoma Nasofaríngeo/sangre , Carcinoma Nasofaríngeo/patología , Pronóstico , Neoplasias Nasofaríngeas/mortalidad , Neoplasias Nasofaríngeas/sangre , Neoplasias Nasofaríngeas/patología , Adulto , Anciano , Plaquetas/patología , Tasa de Supervivencia , Estudios Retrospectivos , Linfocitos/patología , Adulto JovenRESUMEN
BACKGROUND: Membranous nephropathy (MN) is an immune complex-mediated disease. Massive proteinuria can lead to Fanconi syndrome, clinically manifesting as renal glycosuria. The prevalence and prognosis of M-type phospholipase A2 receptor (PLA2R)-related MN with renal glycosuria remain unknown. MATERIALS AND METHODS: Patients diagnosed with PLA2R-related MN with renal glycosuria were reviewed, and the control group comprised patients with MN without renal glycosuria who were randomly selected at a ratio of 1 : 3. RESULTS: 50 patients diagnosed with PLA2R-related MN with renal glycosuria from January 2015 to January 2020 were included, with a prevalence of 2.3%. Compared with patients without renal glycosuria, those with renal glycosuria exhibited greater proteinuria, lower estimated glomerular filtration rate (eGFR), and higher use of diuretics, anticoagulants, antibiotics, traditional Chinese medicine, and tacrolimus within 3 months prior to renal biopsy (all p < 0.05). Histologically, patients with renal glycosuria exhibited more severe pathological stages, acute/chronic tubulointerstitial lesions, and tubulointerstitial inflammation (all p < 0.05). Of the 10 patients treated with rituximab (RTX), proteinuria remission was maintained in 6 (60%) patients, and urine glucose remission was achieved in 5 of these 6 patients (83.3%). Multivariate Cox regression analysis showed that renal glycosuria and age > 50 years were independent risk factors for end-stage renal disease (ESRD) or a 30% reduction in the eGFR in patients with PLA2R-related MN. CONCLUSION: PLA2R-related MN patients with renal glycosuria presented with more severe clinicopathological manifestations and worse prognoses. Nephrotoxic drugs should be administered rationally, and RTX should be considered as a promising treatment option.
Asunto(s)
Glomerulonefritis Membranosa , Glucosuria , Receptores de Fosfolipasa A2 , Rituximab , Humanos , Glomerulonefritis Membranosa/tratamiento farmacológico , Glomerulonefritis Membranosa/patología , Glomerulonefritis Membranosa/complicaciones , Masculino , Femenino , Receptores de Fosfolipasa A2/inmunología , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Rituximab/uso terapéutico , Proteinuria/etiología , Tasa de Filtración Glomerular , Resultado del Tratamiento , Riñón/patología , Factores de Riesgo , Pronóstico , PrevalenciaRESUMEN
Purpose: To evaluate the prognostic significance of platelet distribution width-to-lymphocyte ratio (PDWLR) in patients with locoregionally advanced nasopharyngeal carcinoma (LA-NPC). Moreover, a nomogram based on PDWLR was built and validated to predict the overall survival (OS) of this population. Patients and Methods: All LA-NPC patients who were diagnosed and treated between January 2015 and December 2017 at Guangxi Medical University Cancer Hospital were included. Cox regression analyses were performed to assess PDWLR and clinical features that might affect OS to screen for independent predictors. The independent predictors and important clinical variables were used to build and validate a nomogram for predicting OS. Then, the capability of the model was estimated by discrimination, calibration and clinical usefulness. Risk stratification was conducted using the nomogram-calculated risk score, and the comparison of survival in the high-risk group and the low-risk group was through Kaplan-Meier method. Results: This study included 746 LA-NPC patients. Multivariate Cox analysis suggested that age (hazard ratio [HR]: 1.81, 95% confidence interval [CI]: 1.18-2.78, P = 0.007), gender (HR: 2.03, 95% CI: 1.12-3.68, P = 0.019), pre-treatment plasma Epstein-Barr virus (EBV) DNA (HR: 1.55, 95% CI: 1.01-2.39, P = 0.047), PDWLR (HR: 2.61, 95% CI: 1.67-4.09, P < 0.001) were independent predictors of OS. Compared to the 8th edition TNM staging system, the nomogram based on the above four factors and important clinical variables (T stage and N stage) demonstrated better predictive performance. Moreover, the model had the ability to identify individuals at high risk. Conclusion: PDWLR was a promising negative predictor for patients with LA-NPC. The nomogram based on PDWLR demonstrated better predictive performance than the current staging system.
RESUMEN
Asparagus officinalis (ASP) has antioxidation, anti-inflammatory, antiaging, and immune system-enhancing effects. We explored the preventive and therapeutic consequences of ASP on the brain damage elicited by fluorosis through network pharmacology and in vivo experimental validation. We ascertained the pharmaceutically active ingredients and drug targets of ASP from the Traditional Chinese Medicine Systems Pharmacology database, predicted the disease targets of fluorosis-induced brain injury using GeneCards and Online Mendelian Inheritance in Man databases, obtained target protein-protein interaction networks in the Search Tool for the Retrieval of Interacting Genes/Proteins database, used Cytoscape to obtain key targets and active ingredients, and conducted enrichment analyses of key targets in the Database for Annotation, Visualization and Integrated Discovery. Enrichment analyses showed that "mitogen-activated protein kinase" (MAPK), "phosphoinositide 3-kinase/protein kinase B" (PI3K-Akt), "nuclear factor-kappa B" (NF-κB), and the "neurotrophin signaling pathway" were the most enriched biological processes and signaling pathways. ASP could alleviate fluorosis-based injury, improve brain-tissue damage, increase urinary fluoride content, and improve oxidation levels and inflammatory-factor levels in the body. ASP could also reduce dental fluorosis, bone damage, fluoride concentrations in blood and bone, and accumulation of lipid peroxide. Upon ASP treatment, expression of silent information regulator (SIRT)1, brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), MAPK, NF-κB, PI3K, Akt, and B-cell lymphoma-2 in rat brain tissue increased gradually, whereas that of Bax, caspase-3, and p53 decreased gradually. We demonstrated that ASP could regulate the brain damage caused by fluorosis through the SIRT1/BDNF/TrkB signaling pathway, and reported the possible part played by ASP in preventing and treating fluorosis.
RESUMEN
Sepsis is characterized by a metabolic disorder of amino acid occurs in the early stage; however, the profile of serum amino acids and their alterations associated with the onset of sepsis remain unclear. Thus, our objective is to identify the specific kinds of amino acids as diagnostic biomarkers in pediatric patients with sepsis. Serum samples were collected from patients with sepsis admitted to the pediatric intensive care unit (PICU) between January 2019 and December 2019 on the 1st, 3rd and 7th day following admission. Demographic and laboratory variables were also retrieved from the medical records specified times. Serum amino acid concentrations were detected by UPLC-MS/MS system. PLS-DA (VIP > 1.0) and Kruskal-Wallis test (p < 0.05) were employed to identify potential biomarkers. Spearman's rank correlation analysis was conducted to find the potential association between amino acid levels and clinical features. The diagnostic utility for pediatric sepsis was assessed using receiver operating characteristic (ROC) curve analysis. Most of amino acid contents in serum were significantly decreased in patients with sepsis, but approached normal levels by the seventh day post-diagnosis. Threonine (THR), lysine (LYS), valine (VAL) and alanine (ALA) emerged as potential biomarkers related for sepsis occurrence, though they were not associated with PELOD/PELOD-2 scores. Moreover, alterations in serum THR, LYS and ALA were linked to complications of brain injury, and serum ALA levels were also related to sepsis-associated acute kidney injury. Further analysis revealed that ALA was significantly correlated with the Glasgow score, serum lactate and glucose levels, C-reactive protein (CRP), and other indicators for liver or kidney dysfunction. Notably, the area under the ROC curve (AUC) for ALA in distinguishing sepsis from healthy controls was 0.977 (95% CI: 0.925-1.000). The serum amino acid profile of children with sepsis is significantly altered compared to that of healthy controls. Notably, ALA shows promise as a potential biomarker for the early diagnosis in septic children.
Asunto(s)
Alanina , Biomarcadores , Unidades de Cuidado Intensivo Pediátrico , Sepsis , Humanos , Sepsis/sangre , Sepsis/diagnóstico , Biomarcadores/sangre , Masculino , Proyectos Piloto , Femenino , Preescolar , Alanina/sangre , Niño , Lactante , Curva ROC , Aminoácidos/sangre , Espectrometría de Masas en TándemRESUMEN
Road cracks significantly affect the serviceability and safety of roadways, especially in mountainous terrain. Traditional inspection methods, such as manual detection, are excessively time-consuming, labor-intensive, and inefficient. Additionally, multi-function detection vehicles equipped with diverse sensors are costly and unsuitable for mountainous roads, primarily because of the challenging terrain conditions characterized by frequent bends in the road. To address these challenges, this study proposes a customized Unmanned Aerial Vehicle (UAV) inspection system designed for automatic crack detection. This system focuses on enhancing autonomous capabilities in mountainous terrains by incorporating embedded algorithms for route planning, autonomous navigation, and automatic crack detection. The slide window method (SWM) is proposed to enhance the autonomous navigation of UAV flights by generating path planning on mountainous roads. This method compensates for GPS/IMU positioning errors, particularly in GPS-denied or GPS-drift scenarios. Moreover, the improved MRC-YOLOv8 algorithm is presented to conduct autonomous crack detection from UAV imagery in an on/offboard module. To validate the performance of our UAV inspection system, we conducted multiple experiments to evaluate its accuracy, robustness, and efficiency. The results of the experiments on automatic navigation demonstrate that our fusion method, in conjunction with SWM, effectively enables real-time route planning in GPS-denied mountainous terrains. The proposed system displays an average localization drift of 2.75% and a per-point local scanning error of 0.33 m over a distance of 1.5 km. Moreover, the experimental results on the road crack detection reveal that the MRC-YOLOv8 algorithm achieves an F1-Score of 87.4% and a mAP of 92.3%, thus surpassing other state-of-the-art models like YOLOv5s, YOLOv8n, and YOLOv9 by 1.2%, 1.3%, and 3.0% in terms of mAP, respectively. Furthermore, the parameters of the MRC-YOLOv8 algorithm indicate a volume reduction of 0.19(×106) compared to the original YOLOv8 model, thus enhancing its lightweight nature. The UAV inspection system proposed in this study serves as a valuable tool and technological guidance for the routine inspection of mountainous roads.
RESUMEN
Despite the advantages of high tissue penetration depth, selectivity, and non-invasiveness of photothermal therapy for cancer treatment, developing NIR-II photothermal agents with desirable photothermal performance and advanced theranostics ability remains a key challenge. Herein, a universal surface modification strategy is proposed to effectively improve the photothermal performance of vanadium carbide MXene nanosheets (L-V2C) with the removal of surface impurity ions and generation of mesopores. Subsequently, MnOx coating capable of T1-weighted magnetic resonance imaging can be in situ formed through surface redox reaction on L-V2C, and then, stable nanoplatforms (LVM-PEG) under physiological conditions can be obtained after further PEGylation. In the tumor microenvironment irradiated by NIR-II laser, multivalent Mn ions released from LVM-PEG, as a reversible electronic station, can consume the overexpression of glutathione and catalyze a Fenton-like reaction to produce ·OH, resulting in synchronous cellular oxidative damage. Efficient synergistic therapy promotes immunogenic cell death, improving tumor-related immune microenvironment and immunomodulation, and thus, LVM-PEG can demonstrate high accuracy and excellent anticancer efficiency guided by multimodal imaging. As a result, this study provides a new approach for the customization of 2D surface strategies and the study of synergistic therapy mechanisms, highlighting the application of MXene-based materials in the biomedical field.
RESUMEN
To investigate the impact of the effective radiation dose to immune cells (EDIC) and gross tumor volume (GTV) on lymphopenia and survival in patients with locally advanced esophageal squamous cell carcinoma (LAESCC). Between January 2013 and December 2020, 272 LAESCC patients were treated with definitive radiotherapy in two institutions. Based on radiation doses to the lungs, heart, and body region scanned, EDIC was calculated as an equal uniform dose to the total blood considering blood flow and fraction effect. The radiotherapy plan was used to calculate the GTVs. Lymphopenia was graded based on the lowest lymphocyte count during RT. The overall survival (OS), progress-free survival (PFS), and local recurrence-free survival (LRFS) were analyzed statistically. The lowest lymphocyte count was significantly correlated with EDIC (r= -0.389, p < .001) and GTV (r= -0.211, p < .001). Lymphopenia, EDIC, and GTV are risk factors for patients with ESCC. In a Kaplan-Meier analysis with EDIC and GTV as stratification factors, lymphopenia was not associated with OS in the EDIC>12.9 Gy group (p = .294)and EDIC ≤ 12.9 Gy group, and it was also not associated with OS in GTV>68.8 cm3 group (p = .242) and GTV ≤ 68.8 cm3 group(p = .165). GTV and EDIC had an impact on the relationship between lymphopenia and OS in patients with LAESCC undergoing definitive RT. Poorer OS, PFS, and LRFS are correlated with lymphopenia, higher EDIC, and larger GTV.
Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Linfopenia , Humanos , Linfopenia/etiología , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/radioterapia , Masculino , Femenino , Persona de Mediana Edad , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/radioterapia , Anciano , Adulto , Estudios Retrospectivos , Pronóstico , Anciano de 80 o más Años , Carga Tumoral , Recuento de Linfocitos , Dosificación RadioterapéuticaRESUMEN
Introduction: Dual specificity protein phosphatase 6 (DUSP6) was recently identified as a key hub gene in a causal VGF gene network that regulates late-onset Alzheimer's disease (AD). Importantly, decreased DUSP6 levels are correlated with an increased clinical dementia rating (CDR) in human subjects, and DUSP6 levels are additionally decreased in the 5xFAD amyloidopathy mouse model. Methods: To investigate the role of DUSP6 in AD, we stereotactically injected AAV5-DUSP6 or AAV5-GFP (control) into the dorsal hippocampus (dHc) of both female and male 5xFAD or wild type mice, to induce overexpression of DUSP6 or GFP. Results: Barnes maze testing indicated that DUSP6 overexpression in the dHc of 5xFAD mice improved memory deficits and was associated with reduced amyloid plaque load, Aß1-40 and Aß1-42 levels, and amyloid precursor protein processing enzyme BACE1, in male but not in female mice. Microglial activation, which was increased in 5xFAD mice, was significantly reduced by dHc DUSP6 overexpression in both males and females, as was the number of "microglial clusters," which correlated with reduced amyloid plaque size. Transcriptomic profiling of female 5xFAD hippocampus revealed upregulation of inflammatory and extracellular signal-regulated kinase pathways, while dHc DUSP6 overexpression in female 5xFAD mice downregulated a subset of genes in these pathways. Gene ontology analysis of DEGs (p < 0.05) identified a greater number of synaptic pathways that were regulated by DUSP6 overexpression in male compared to female 5xFAD. Discussion: In summary, DUSP6 overexpression in dHc reduced amyloid deposition and memory deficits in male but not female 5xFAD mice, whereas reduced neuroinflammation and microglial activation were observed in both males and females, suggesting that DUSP6-induced reduction of microglial activation did not contribute to sex-dependent improvement in memory deficits. The sex-dependent regulation of synaptic pathways by DUSP6 overexpression, however, correlated with the improvement of spatial memory deficits in male but not female 5xFAD.
RESUMEN
BACKGROUND: Cellular senescence, macrophages infiltration, and vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation participate in the pathophysiology of vascular calcification in chronic kidney disease (CKD). Senescent macrophages are involved in the regulation of inflammation in pathological diseases. In addition, senescent cells spread senescence to neighboring cells via Interferon-induced transmembrane protein3 (IFITM3). However, the role of senescent macrophages and IFITM3 in VSMCs calcification remains unexplored. AIMS: To explore the hypothesis that senescent macrophages contribute to the calcification and senescence of VSMCs via IFITM3. METHODS: Here, the macrophage senescence model was established using Lipopolysaccharides (LPS). The VSMCs were subjected to supernatants from macrophages (MCFS) or LPS-induced macrophages (LPS-MCFS) in the presence or absence of calcifying media (CM). Senescence-associated ß-galactosidase (SA-ß-gal), Alizarin red (AR), immunofluorescent staining, and western blot were used to identify cell senescence and calcification. RESULTS: The expression of IFITM3 was significantly increased in LPS-induced macrophages and the supernatants. The VSMCs transdifferentiated into osteogenic phenotype, expressing higher osteogenic differentiation markers (RUNX2) and lower VSMCs constructive makers (SM22α) when cultured with senescent macrophages supernatants. Also, senescence markers (p16 and p21) in VSMCs were significantly increased by senescent macrophages supernatants treated. However, IFITM3 knockdown inhibited this process. CONCLUSIONS: Our study showed that LPS-induced senescence of macrophages accelerated the calcification of VSMCs via IFITM3. These data provide a new perspective linking VC and aging, which may provide clues for diagnosing and treating accelerated vascular aging in patients with CKD.
Asunto(s)
Senescencia Celular , Lipopolisacáridos , Macrófagos , Proteínas de la Membrana , Músculo Liso Vascular , Proteínas de Unión al ARN , Calcificación Vascular , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Lipopolisacáridos/farmacología , Calcificación Vascular/patología , Calcificación Vascular/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de Unión al ARN/metabolismo , Humanos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Células Cultivadas , Animales , Osteogénesis , Transdiferenciación CelularRESUMEN
Focal segmental glomerulosclerosis (FSGS), a common cause of primary glomerulonephritis, has a poor prognosis and is pathologically featured by tubulointerstitial injury. Thrombospondin-1 (TSP-1) is an extracellular matrix protein that acts in combination with different receptors in the kidney. Here, we analyzed the tubular expression of TSP-1 and its receptor integrin ß3 (ITGB3) in FSGS. Previously the renal interstitial chip analysis of FSGS patients with tubular interstitial injury showed that the expression of TSP-1 and ITGB3 were upregulated. We found that the expression of TSP-1 and ITGB3 increased in the tubular cells of FSGS patients. The plasma level of TSP-1 increased and was correlated to the degree of tubulointerstitial lesions in FSGS patients. TSP-1/ITGB3 signaling induced renal tubular injury in HK-2 cells exposure to bovine serum albumin and the adriamycin (ADR)-induced nephropathy model. THBS1 KO ameliorated tubular injury and renal fibrosis in ADR-treated mice. THBS1 knockdown decreased the expression of KIM-1 and caspase 3 in the HK-2 cells treated with bovine serum albumin, while THBS1 overexpression could induce tubular injury. In vivo, we identified cyclo-RGDfK as an agent to block the binding of TSP-1 to ITGB3. Cyclo-RGDfK treatment could alleviate ADR-induced renal tubular injury and interstitial fibrosis in mice. Moreover, TSP-1 and ITGB3 were colocalized in tubular cells of FSGS patients and ADR-treated mice. Taken together, our data showed that TSP-1/ITGB3 signaling contributed to the development of renal tubulointerstitial injury in FSGS, potentially identifying a new therapeutic target for FSGS.