Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
aBIOTECH ; 3(3): 163-168, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36304841

RESUMEN

Reinventing the tetraploid potato into a seed-propagated, diploid, hybrid potato would significantly accelerate potato breeding. In this regard, the development of highly homozygous inbred lines is a prerequisite for breeding hybrid potatoes, but self-incompatibility and inbreeding depression present challenges for developing pure inbred lines. To resolve this impediment, we developed a doubled haploid (DH) technology, based on mutagenesis of the potato DOMAIN OF UNKNOWN FUNCTION 679 membrane protein (StDMP) gene. Here, we show that a deficiency in StDMP allows the generation of maternal haploids for generating diploid potato lines. An exercisable protocol, involving hybridization, fluorescent marker screening, molecular and flow cytometric identification, and doubling with colchicine generates nearly 100% homozygous diploid potato lines. This dmp-triggered haploid induction (HI) system greatly shortens the breeding process and offers a robust method for generating diploid potato inbred lines with high purity. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-022-00080-7.

3.
Nature ; 606(7914): 535-541, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676481

RESUMEN

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Asunto(s)
Productos Agrícolas , Evolución Molecular , Genoma de Planta , Solanum tuberosum , Productos Agrícolas/genética , Genoma de Planta/genética , Fitomejoramiento , Tubérculos de la Planta/genética , Solanum tuberosum/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA