Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 766
Filtrar
1.
World J Gastrointest Surg ; 16(7): 2183-2193, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39087096

RESUMEN

BACKGROUND: According to the theory of traditional Chinese medicine (TCM), the spleen and stomach are the basis of acquired nature and the source of qi and blood biochemistry. After surgery and chemotherapy, patients with colorectal cancer often develop spleen and stomach qi deficiency syndrome, leading to decreased immune function. Buzhong Yiqi decoction, a classic TCM prescription, has the effect of tonifying middle-jiao and invigorating qi, boosting Yang, and suppressing immune-related inflammation. Moreover, it is widely used in the treatment of spleen and stomach qi deficiency syndrome. AIM: To investigate the effect of Buzhong Yiqi decoction on spleen and stomach qi deficiency in patients with colorectal cancer. METHODS: One hundred patients with colorectal cancer who underwent preoperative chemotherapy and laparoscopy at The First TCM Hospital of Changde from January 2022 to October 2023 were retrospectively analyzed. The patients were divided equally into control and observation groups. Both groups underwent conventional rehabilitation surgery, and the observation group was supplemented with Buzhong Yiqi decoction. SPSS 26.0 was used for statistical analyses. The χ 2 test was used for univariate analysis; independent sample t-tests were used in all cases. RESULTS: No significant differences were observed preoperatively in the general characteristics of the two groups. Fourteen days post-surgery, the abdominal distension, emaciation, loose stool, loss of appetite, and vomiting scores were significantly lower in the observation group than in the control group (P < 0.05). Immune function and interleukin (IL)-10 levels in the observation group were significantly higher than those of the control group, whereas IL-6, tumor necrosis factor-α, and C-reactive protein levels, tumor biological indexes, and adverse reactions in the observation group were significantly lower than those of the control group (P < 0.05). One month after surgery, the patients' quality of life in the observation group was significantly higher than that of the patients in the control group (P < 0.05). CONCLUSION: Buzhong Yiqi decoction can regulate inflammatory responses and metabolic processes by enhancing immune function, thereby promoting overall immune nutrition and restoring the body's balance.

2.
Transl Oncol ; 48: 102074, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39106551

RESUMEN

Patients with EGFR-mutated non-small cell lung cancer (NSCLC) respond poorly to immune checkpoint inhibitors (ICIs). It has been reported that the number of CD8+T cells is reduced in EGFR-mutated NSCLC. However, the extent of heterogeneity and effector function of distinct populations of CD8+T cells has not been investigated intensively. In addition, studies investigating whether a combination of radiotherapy and ICIs can improve the efficacy of ICIs in EGFR-mutated lung cancer are lacking. Single-cell RNA sequencing (scRNA-seq) was used to investigate the heterogeneity of CD8+T cell populations in EGFR-mutated NSCLC. The STING pathway was explored after hypofractionated radiation of EGFR-mutated and wild-type cells. Mice bearing LLC-19del and LLC-EGFR tumors were treated with radiotherapy plus anti-PD-L1. The scRNA-seq data showed the percentage of progenitor exhausted CD8+T cells was lower in EGFR-mutated NSCLC. In addition, CD8+T cells in EGFR-mutated NSCLC were enriched in oxidative phosphorylation. In EGFR-mutated and wild-type cells, 8 Gy × 3 increased the expression of chemokines that recruit T cells and activate the cGAS-STING pathway. In the LLC-19del and LLC-EGFR mouse model, the combination of radiation and anti-PD-L1 significantly inhibited the growth of abscopal tumors. The enhanced abscopal effect was associated with systemic CD8+T cell infiltration. This study provided an intensive understanding of the heterogeneity and effector functions of CD8+T cells in EGFR-mutated NSCLC. We showed that the combination of hypofractionated radiation and anti-PD-L1 significantly enhanced the abscopal responses in both EGFR-mutated and wild-type lung cancer by activating CD8+T cells in mice.

3.
J Affect Disord ; 362: 308-316, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38971193

RESUMEN

BACKGROUND: The bidirectional relationships between metabolic syndrome (MetS) and major depressive disorder (MDD) were discovered, but the influencing factors of the comorbidity were barely investigated. We aimed to fully explore the factors and their associations with MetS in MDD patients. METHODS: The data were retrieved from the electronic medical records of a tertiary psychiatric hospital in Beijing from 2016 to 2021. The influencing factors were firstly explored by univariate analysis and multivariate logistic regressions. The propensity score matching was used to reduce the selection bias of participants. Then, the Bayesian networks (BNs) with hill-climbing algorithm and maximum likelihood estimation were preformed to explore the relationships between influencing factors with MetS in MDD patients. RESULTS: Totally, 4126 eligible subjects were included in the data analysis. The proportion rate of MetS was 32.6 % (95 % CI: 31.2 %-34.1 %). The multivariate logistic regression suggested that recurrent depression, uric acid, duration of depression, marriage, education, number of hospitalizations were significantly associated with MetS. In the BNs, number of hospitalizations and uric acid were directly connected with MetS. Recurrent depression and family history psychiatric diseases were indirectly connected with MetS. The conditional probability of MetS in MDD patients with family history of psychiatric diseases, recurrent depression and two or more times of hospitalizations was 37.6 %. CONCLUSION: Using the BNs, we found that number of hospitalizations, recurrent depression and family history of psychiatric diseases contributed to the probability of MetS, which could help to make health strategies for specific MDD patients.


Asunto(s)
Teorema de Bayes , Comorbilidad , Trastorno Depresivo Mayor , Síndrome Metabólico , Humanos , Trastorno Depresivo Mayor/epidemiología , Síndrome Metabólico/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Factores de Riesgo , China/epidemiología , Modelos Logísticos , Hospitalización/estadística & datos numéricos , Ácido Úrico/sangre , Puntaje de Propensión
4.
Nat Commun ; 15(1): 6294, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39060273

RESUMEN

Aluminum (Al) toxicity is one of the major constraints for crop production in acid soils, Al-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-dependent malate exudation from roots is essential for Al resistance in Arabidopsis, in which the C2H2-type transcription factor SENSITIVE TO PROTONRHIZOTOXICITY1 (STOP1) play a critical role. In this study, we reveal that the RAE1-GL2-STOP1-RHD6 protein module regulated the ALMT1-mediated Al resistance. GL2, STOP1 and RHD6 directly target the promoter of ALMT1 to suppress or activate its transcriptional expression, respectively, and mutually influence their action on the promoter of ALMT1 by forming a protein complex. STOP1 mediates the expression of RHD6 and RHD6-regulated root growth inhibition, while GL2 and STOP1 suppress each other's expression at the transcriptional and translational level and regulate Al-inhibited root growth. F-box protein RAE1 degrades RHD6 via the 26S proteasome, leading to suppressed activity of the ALMT1 promoter. RHD6 inhibits the transcriptional expression of RAE1 by directly targeting its promoter. Unlike RHD6, RAE1 promotes the GL2 expression at the protein level and GL2 activates the expression of RAE1 at the transcriptional level by directly targeting its promoter. The study provides insights into the transcriptional regulation of ALMT1, revealing its significance in Al resistance and highlighting the crucial role of the STOP1-associated regulatory networks.


Asunto(s)
Aluminio , Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Regiones Promotoras Genéticas , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Aluminio/toxicidad , Aluminio/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Regiones Promotoras Genéticas/genética , Transportadores de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Plantas Modificadas Genéticamente
5.
Front Psychiatry ; 15: 1421370, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39077630

RESUMEN

Purpose: Examine the alterations in antipsychotic concentrations following coronavirus disease-2019 (COVID-19) infection among hospitalized patients with mental disorders and conduct an analysis of the factors influencing these changes. Methods: Data were collected from inpatients at Beijing Huilongguan Hospital between December 12, 2022, and January 11, 2023, pre- and post-COVID-19. Based on the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, 329 inpatients with mental disorders were included (3 with incomplete data excluded). Primary outcomes assessed changes in antipsychotic concentrations pre- and post-COVID-19, while secondary outcomes examined factors linked to concentration increases and antipsychotic dose adjustments. Results: Clozapine (P < 0.001), aripiprazole (P < 0.001), quetiapine (P = 0.005), olanzapine (P < 0.001), risperidone (P < 0.001), and paliperidone (P < 0.001) concentrations increased post-COVID-19 in patients with mental disorders. Notably, clozapine concentration surpassing pre-infection levels was highest. Clozapine users were more likely to adjust their dose (50.4%) compared to olanzapine (17.5%) and other antipsychotics. Moreover, traditional Chinese patent medicines and antibiotics during COVID-19 infection were associated with antipsychotic reduction or withdrawal (OR = 2.06, P = 0.0247; OR = 7.53, P = 0.0024, respectively). Conclusion: Antipsychotic concentrations in hospitalized patients with mental disorders increased after COVID-19 infection, that may be related not only to COVID-19, but also to the use of Chinese patent medicines during infection. The pre-infection concentration and types of antipsychotics, patient's gender, and combination of traditional Chinese medicine or antibiotics, were factors found to correlate with increased drug concentrations and necessitate dose adjustments.

6.
Int J Ophthalmol ; 17(7): 1300-1306, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39026913

RESUMEN

AIM: To determine the factors related to preoperative ocular characters that are predictive of insufficient vault (<250 µm) after implantable collamer lens (ICL V4c; STAAR Surgical) implantation. METHODS: The participants underwent ICL surgery and were divided into the low (<250 µm) and normal (250-1000 µm) vault groups based on the postoperative vault at 3mo. The preoperative biometric parameters and clinical outcomes were compared between the two groups. The relationship between the 3-month vault values and preoperative ocular parameters were evaluated by Generalized estimating equations. RESULTS: Sixteen (23 eyes) and 36 patients (63 eyes) were in the low and normal vault groups, respectively. All implantation procedures were uneventful with no cataract formation in the early postoperative period. The sulcus-to-sulcus lens rise (STSL) and iris ciliary angle (ICA) were correlated with vault at 3mo after surgery. Every 0.1 mm increase in STSL was associated with 38.9 µm decrease in the postoperative 3-month vault. A rise of 1 degree in ICA is associated with a reduction of 4 µm in vault. CONCLUSION: Eyes with a narrow ciliary sulcus are associated with a higher rate of low vault after ICL implantation, suggesting a need for adjustments to the ICL size in these patients. Evaluating the characteristics of the ciliary sulcus contributes valuable information to predict low vault after surgery.

7.
J Food Sci ; 89(7): 4109-4122, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38957103

RESUMEN

The elucidation of the interaction mechanism between phospholipids and milk proteins within emulsions is pivotal for comprehending the properties of infant formula fat globules. In this study, multispectral methods and molecular docking were employed to explore the relationship between phosphatidylcholine (PC) and whey protein isolate (WPI). Observations indicate that the binding constant, alongside thermodynamic parameters, diminishes as temperature ascends, hinting at a predominantly static quenching mechanism. Predominantly, van der Waals forces and hydrogen bonds constitute the core interactions between WPI and PC. This assertion is further substantiated by Fourier transform infrared spectroscopy, which verifies PC's influence on WPI's secondary structure. A detailed assessment of thermodynamic parameters coupled with molecular docking reveals that PC predominantly adheres to specific sites within α-lactalbumin, ß-lactoglobulin, and bovine serum albumin, propelled by a synergy of hydrophobic interactions, hydrogen bonding, and van der Waals forces, with binding energies noted at -5.59, -6.71, and -7.85 kcal/mol, respectively. An increment in PC concentration is observed to amplify the emulsification properties of WPI whilst concurrently diminishing the zeta potential. This study establishes a theoretical foundation for applying the PC-WPI interaction mechanism in food.


Asunto(s)
Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Fosfatidilcolinas , Termodinámica , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Fosfatidilcolinas/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Lactoglobulinas/química , Lactoglobulinas/metabolismo , Emulsiones/química , Lactalbúmina/química , Lactalbúmina/metabolismo , Albúmina Sérica Bovina/química , Fórmulas Infantiles/química
8.
EJNMMI Res ; 14(1): 62, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38967722

RESUMEN

BACKGROUND: Uveal melanoma (UM) is the most common primary intraocular tumor in adults, and early detection is critical to improve the clinical outcome of this disease. In this study, the diagnostic effectiveness of [18F]AlF-NOTA-PRGD2 (an investigational medicinal product) positron emission tomography (PET) imaging in UM xenografts and UM patients were evaluated. The cell uptake, cell binding ability and in vitro stability of [18F]AlF-NOTA-PRGD2 were evaluated in 92-1 UM cell line. MicroPET imaging and biodistribution study of [18F]AlF-NOTA-PRGD2 were conducted in 92-1 UM xenografts. Then, UM patients were further recruited for evaluating the diagnostic effectiveness of [18F]AlF-NOTA-PRGD2 PET imaging (approval no. NCT02441972 in clinicaltrials.gov). In addition, comparison of [18F]AlF-NOTA-PRGD2 and 18F-labelled fluorodeoxyglucose ([18F]FDG) PET imaging in UM xenografts and UM patients were conducted. RESULTS: The in vitro data showed that [18F]AlF-NOTA-PRGD2 had a high cell uptake, cell binding ability and in vitro stability in 92-1 UM cell line. The in vivo data indicated that 92-1 UM tumors were clearly visualized with the [18F]AlF-NOTA-PRGD2 tracer in the subcutaneous and ocular primary UM xenografts model at 60 min post-injection. And the tumor uptake of the tracer was 2.55 ± 0.44%ID/g and 1.73 ± 0.15%ID/g at these two tissue locations respectively, at 7 days after animal model construction. The clinical data showed that tumors in UM patients were clearly visualized with the [18F]AlF-NOTA-PRGD2 tracer at 60 min post-injection. In addition, [18F]AlF-NOTA-PRGD2 tracer showed higher sensitivity and specificity for PET imaging in UM xenografts and UM patients compared to [18F]FDG tracer. CONCLUSION: [18F]AlF-NOTA-PRGD2 PET imaging may be a more preferred approach in the diagnosis of primary UM compared to [18F]FDG PET imaging. Additionally, due to the high tumor-to-background ratio, [18F]AlF-NOTA-PRGD2 PET imaging seems also to be applicable for the diagnosis of UM patients with liver metastasis. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02441972, Registered 1 January 2012, https://clinicaltrials.gov/study/NCT02441972 .

9.
Food Sci Nutr ; 12(7): 5100-5110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39055233

RESUMEN

Our previous clinical metabolomics study illustrated that energy metabolism disorder is an underlying pathogenesis mechanism for the development of alcoholic liver disease (ALD). Supplementation of nicotinamide (NAM), the precursor of nicotinamide adenine dinucleotide (NAD+), may restore the energy metabolism homeostasis of ALD and thus serves as potential therapeutics to treat ALD. In this bedside-to-bench study, the protective effect of NAM against ALD was investigated by using the NIAAA mice model (chronic-plus-binge ethanol), and the liver regeneration boosting capability of NAM was evaluated by the partial hepatectomy mice model. Our results showed that NAM supplements not only protected the liver from alcohol-induced injury and improved alcohol-induced mitochondrial structure and function change, but also boosted liver regeneration in postpartial hepatectomy mice by increasing liver NAD+ content. These findings suggested that NAM, a water-soluble form of vitamin B3, can promote liver regeneration and improves liver function by alleviating alcohol-induced energy metabolism disorder.

10.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-38976033

RESUMEN

Mangroves perform a crucial ecological role along the tropical and subtropical coastal intertidal zone where salinity fluctuation occurs frequently. However, the differential responses of mangrove plant at the combined transcriptome and metabolome level to variable salinity are not well documented. In this study, we used Avicennia marina (Forssk.) Vierh., a pioneer species of mangrove wetlands and one of the most salt-tolerant mangroves, to investigate the differential salt tolerance mechanisms under low and high salinity using inductively coupled plasma-mass spectrometry, transcriptomic and metabolomic analysis. The results showed that HAK8 was up-regulated and transported K+ into the roots under low salinity. However, under high salinity, AKT1 and NHX2 were strongly induced, which indicated the transport of K+ and Na+ compartmentalization to maintain ion homeostasis. In addition, A. marina tolerates low salinity by up-regulating ABA signaling pathway and accumulating more mannitol, unsaturated fatty acids, amino acids' and L-ascorbic acid in the roots. Under high salinity, A. marina undergoes a more drastic metabolic network rearrangement in the roots, such as more L-ascorbic acid and oxiglutatione were up-regulated, while carbohydrates, lipids and amino acids were down-regulated in the roots, and, finally, glycolysis and TCA cycle were promoted to provide more energy to improve salt tolerance. Our findings suggest that the major salt tolerance traits in A. marina can be attributed to complex regulatory and signaling mechanisms, and show significant differences between low and high salinity.


Asunto(s)
Avicennia , Metaboloma , Raíces de Plantas , Salinidad , Tolerancia a la Sal , Plantas Tolerantes a la Sal , Transcriptoma , Avicennia/genética , Avicennia/fisiología , Avicennia/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/fisiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas
11.
Cell Commun Signal ; 22(1): 362, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010102

RESUMEN

Dihydroorotase (DHOase) is the third enzyme in the six enzymatic reaction steps of the endogenous pyrimidine nucleotide de novo biosynthesis pathway, which is a metabolic pathway conserved in both bacteria and eukaryotes. However, research on the biological function of DHOase in plant pathogenic fungi is very limited. In this study, we identified and named MoPyr4, a homologous protein of Saccharomyces cerevisiae DHOase Ura4, in the rice blast fungus Magnaporthe oryzae and investigated its ability to regulate fungal growth, pathogenicity, and autophagy. Deletion of MoPYR4 led to defects in growth, conidiation, appressorium formation, the transfer and degradation of glycogen and lipid droplets, appressorium turgor accumulation, and invasive hypha expansion in M. oryzae, which eventually resulted in weakened fungal pathogenicity. Long-term replenishment of exogenous uridine-5'-phosphate (UMP) can effectively restore the phenotype and virulence of the ΔMopyr4 mutant. Further study revealed that MoPyr4 also participated in the regulation of the Pmk1-MAPK signaling pathway, co-localized with peroxisomes for the oxidative stress response, and was involved in the regulation of the Osm1-MAPK signaling pathway in response to hyperosmotic stress. In addition, MoPyr4 interacted with MoAtg5, the core protein involved in autophagy, and positively regulated autophagic degradation. Taken together, our results suggested that MoPyr4 for UMP biosynthesis was crucial for the development and pathogenicity of M. oryzae. We also revealed that MoPyr4 played an essential role in the external stress response and pathogenic mechanism through participation in the Pmk1-MAPK signaling pathway, peroxisome-related oxidative stress response mechanism, the Osm1-MAPK signaling pathway and the autophagy pathway.


Asunto(s)
Autofagia , Proteínas Fúngicas , Oryza , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Oryza/microbiología , Virulencia/genética , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/enzimología , Sistema de Señalización de MAP Quinasas , Estrés Oxidativo
12.
Trends Pharmacol Sci ; 45(8): 739-756, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39003157

RESUMEN

PANoptosis is a unique innate immune inflammatory lytic cell death pathway initiated by an innate immune sensor and driven by caspases and RIPKs. As a distinct pathway, the execution of PANoptosis cannot be hindered by targeting other cell death pathways, such as pyroptosis, apoptosis, or necroptosis. Instead, targeting key PANoptosome components can serve as a strategy to prevent this form of cell death. Given the physiological relevance in several diseases, PANoptosis is a pivotal therapeutic target. Notably, previous research has primarily focused on the role of PANoptosis in cancer and infectious and inflammatory diseases. By contrast, its role in cardiovascular diseases has not been comprehensively discussed. Here, we review the available evidence on PANoptosis in cardiovascular diseases, including cardiomyopathy, atherosclerosis, myocardial infarction, myocarditis, and aortic aneurysm and dissection, and explore a variety of agents that target PANoptosis, with the overarching goal of providing a novel complementary approach to combatting cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/inmunología , Animales , Necroptosis , Inmunidad Innata
13.
Free Radic Biol Med ; 222: 552-568, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38971541

RESUMEN

Uveal melanoma (UM) is a rare yet lethal primary intraocular malignancy affecting adults. Analysis of data from The Cancer Genome Atlas (TCGA) database revealed that FGFR1 expression was increased in UM tumor tissues and was linked to aggressive behavior and a poor prognosis. This study assessed the anti-tumor effects of Erdafitinib, a selective pan-FGFR inhibitor, in both in vitro and in vivo UM models. Erdafitinib exhibited a robust anti-cancer activity in UM through inducing ferroptosis in the FGFR1-dependent manner. Transcriptomic data revealed that Erdafitinib mediated its anti-cancer effects via modulating the ferritinophagy/lysosome biogenesis. Subsequent research revealed that Erdafitinib exerted its effects by reducing the expression of FGFR1 and inhibiting the activity of mTORC1 in UM cells. Concurrently, it enhanced the dephosphorylation, nuclear translocation, and transcriptional activity of TFEB. The aggregation of TFEB in nucleus triggered FTH1-dependent ferritinophagy, leading to lysosomal activation and iron overload. Conversely, the overexpression of FGFR1 served to mitigate the effects of Erdafitinib on ferritinophagy, lysosome biogenesis, and the activation of the mTORC1/TFEB signaling pathway. In vivo experiments have convincingly shown that Erdafitinib markedly curtails tumor growth in an UM xenograft mouse model, an effect that is closely correlated with a decrease in FGFR1 expression levels. The present study is the first to demonstrate that Erdafitinib powerfully induces ferroptosis in UM by orchestrating the ferritinophagy and lysosome biogenesis via modulating the FGFR1/mTORC1/TFEB signaling. Consequently, Erdafitinib emerges as a strong candidate for clinical trial investigation, and FGFR1 emerges as a novel and promising therapeutic target in the treatment of UM.

14.
Phytomedicine ; 131: 155771, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851101

RESUMEN

BACKGROUND: Sepsis often leads to significant morbidity and mortality due to severe myocardial injury. As is known, the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome crucially contributes to septic cardiomyopathy (SCM) by facilitating the secretion of interleukin (IL)-1ß and IL-18. The removal of palmitoyl groups from NLRP3 is a crucial step in the activation of the NLRP3 inflammasome. Thus, the potential inhibitors that regulate the palmitoylation and inactivation of NLRP3 may significantly diminish sepsis-induced cardiac dysfunction. PURPOSE: The present study sought to explore the effects of the prospective flavonoid compounds targeting NLRP3 on SCM and to elucidate the associated underlying mechanisms. STUDY DESIGN: The palmitoylation and activation of NLRP3 were detected in H9c2 cells and C57BL/6 J mice. METHODS/RESULTS: Echocardiography, histological staining, western blotting, co-immunoprecipitation, qPCR, ELISA and network pharmacology were used to assess the impact of vaccarin (VAC) on SCM in mice subjected to lipopolysaccharide (LPS) injection. From the collection of 74 compounds, we identified that VAC had the strongest capability to suppress NLRP3 luciferase report gene activity in cardiomyocytes, and the anti-inflammatory characteristics of VAC were further ascertained by the network pharmacology. Exposure of LPS triggered apoptosis, inflammation, oxidative stress, mitochondrial disorder in cardiomyocytes. The detrimental alterations were significantly reversed upon VAC treatment in both septic mice and H9c2 cells exposed to LPS. In vivo experiments demonstrated that VAC treatment alleviated septic myocardial injury, indicated by enhanced cardiac function parameters, preserved cardiac structure, and reduced inflammation/oxidative response. Mechanistically, VAC induced NLRP3 palmitoylation to inactivate NLRP3 inflammasome by acting on zDHHC12. In support, the NLRP3 agonist ATP and the acylation inhibitor 2-bromopalmitate (2-BP) prevented the effects of VAC. CONCLUSION: Our findings suggest that VAC holds promise in protecting against SCM by mitigating cardiac oxidative stress and inflammation via priming NLRP3 palmitoylation and inactivation. These results lay the solid basis for further assessment of the therapeutic potential of VAC against SCM.


Asunto(s)
Cardiomiopatías , Inflamasomas , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Sepsis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Cardiomiopatías/tratamiento farmacológico , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Ratones , Masculino , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Lipoilación/efectos de los fármacos , Ratas , Estrés Oxidativo/efectos de los fármacos , Línea Celular , Lipopolisacáridos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Interleucina-1beta/metabolismo , Interleucina-18/metabolismo
15.
Pharmacol Rev ; 76(5): 846-895, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38866561

RESUMEN

Cardiometabolic diseases (CMDs) are major contributors to global mortality, emphasizing the critical need for novel therapeutic interventions. Hydrogen sulfide (H2S) has garnered enormous attention as a significant gasotransmitter with various physiological, pathophysiological, and pharmacological impacts within mammalian cardiometabolic systems. In addition to its roles in attenuating oxidative stress and inflammatory response, burgeoning research emphasizes the significance of H2S in regulating proteins via persulfidation, a well known modification intricately associated with the pathogenesis of CMDs. This review seeks to investigate recent updates on the physiological actions of endogenous H2S and the pharmacological roles of various H2S donors in addressing diverse aspects of CMDs across cellular, animal, and clinical studies. Of note, advanced methodologies, including multiomics, intestinal microflora analysis, organoid, and single-cell sequencing techniques, are gaining traction due to their ability to offer comprehensive insights into biomedical research. These emerging approaches hold promise in characterizing the pharmacological roles of H2S in health and diseases. We will critically assess the current literature to clarify the roles of H2S in diseases while also delineating the opportunities and challenges they present in H2S-based pharmacotherapy for CMDs. SIGNIFICANCE STATEMENT: This comprehensive review covers recent developments in H2S biology and pharmacology in cardiometabolic diseases CMDs. Endogenous H2S and its donors show great promise for the management of CMDs by regulating numerous proteins and signaling pathways. The emergence of new technologies will considerably advance the pharmacological research and clinical translation of H2S.


Asunto(s)
Enfermedades Cardiovasculares , Sulfuro de Hidrógeno , Sulfuro de Hidrógeno/metabolismo , Humanos , Animales , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Gasotransmisores/metabolismo
16.
Neuroimage ; 297: 120701, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38914210

RESUMEN

Due to a high degree of symptom overlap in the early stages, with movement disorders predominating, Parkinson's disease (PD) and multiple system atrophy (MSA) may exhibit a similar decline in motor areas, yet they differ in their spread throughout the brain, ultimately resulting in two distinct diseases. Drawing upon neuroimaging analyses and altered motor cortex excitability, potential diffusion mechanisms were delved into, and comparisons of correlations across distinct disease groups were conducted in a bid to uncover significant pathological disparities. We recruited thirty-five PD, thirty-seven MSA, and twenty-eight matched controls to conduct clinical assessments, electromyographic recording, and magnetic resonance imaging scanning during the "on medication" state. Patients with neurodegeneration displayed a widespread decrease in electrophysiology in bilateral M1. Brain function in early PD was still in the self-compensatory phase and there was no significant change. MSA patients demonstrated an increase in intra-hemispheric function coupled with a decrease in diffusivity, indicating a reduction in the spread of neural signals. The level of resting motor threshold in healthy aged showed broad correlations with both clinical manifestations and brain circuits related to left M1, which was absent in disease states. Besides, ICF exhibited distinct correlations with functional connections between right M1 and left middle temporal gyrus in all groups. The present study identified subtle differences in the functioning of PD and MSA related to bilateral M1. By combining clinical information, cortical excitability, and neuroimaging intuitively, we attempt to bring light on the potential mechanisms that may underlie the development of neurodegenerative disease.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Humanos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/fisiopatología , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/fisiopatología , Anciano , Imagen por Resonancia Magnética/métodos , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiopatología , Electromiografía , Neuroimagen/métodos
17.
Int J Ophthalmol ; 17(6): 1128-1137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38895669

RESUMEN

AIM: To figure out whether various atropine dosages may slow the progression of myopia in Chinese kids and teenagers and to determine the optimal atropine concentration for effectively slowing the progression of myopia. METHODS: A systematic search was conducted across the Cochrane Library, PubMed, Web of Science, EMBASE, CNKI, CBM, VIP, and Wanfang database, encompassing literature on slowing progression of myopia with varying atropine concentrations from database inception to January 17, 2024. Data extraction and quality assessment were performed, and a network Meta-analysis was executed using Stata version 14.0 Software. Results were visually represented through graphs. RESULTS: Fourteen papers comprising 2475 cases were included; five different concentrations of atropine solution were used. The network Meta-analysis, along with the surface under the cumulative ranking curve (SUCRA), showed that 1% atropine (100%)>0.05% atropine (74.9%) >0.025% atropine (51.6%)>0.02% atropine (47.9%)>0.01% atropine (25.6%)>control in refraction change and 1% atropine (98.7%)>0.05% atropine (70.4%)>0.02% atropine (61.4%)>0.025% atropine (42%)>0.01% atropine (27.4%)>control in axial length (AL) change. CONCLUSION: In Chinese children and teenagers, the five various concentrations of atropine can reduce the progression of myopia. Although the network Meta-analysis showed that 1% atropine is the best one for controlling refraction and AL change, there is a high incidence of adverse effects with the use of 1% atropine. Therefore, we suggest that 0.05% atropine is optimal for Chinese children to slow myopia progression.

18.
Exp Eye Res ; 245: 109986, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945519

RESUMEN

Ocular complications of diabetes mellitus (DM) are the leading cause of vision loss. Ocular inflammation often occurs in the early stage of DM; however, there are no proven quantitative methods to evaluate the inflammatory status of eyes in DM. The 18 kDa translocator protein (TSPO) is an evolutionarily conserved cholesterol binding protein localized in the outer mitochondrial membrane. It is a biomarker of activated microglia/macrophages; however, its role in ocular inflammation is unclear. In this study, fluorine-18-DPA-714 ([18F]-DPA-714) was evaluated as a specific TSPO probe by cell uptake, cell binding assays and micro positron emission tomography (microPET) imaging in both in vitro and in vivo models. Primary microglia/macrophages (PMs) extracted from the cornea, retina, choroid or sclera of neonatal rats with or without high glucose (50 mM) treatment were used as the in vitro model. Sprague-Dawley (SD) rats that received an intraperitoneal administration of streptozotocin (STZ, 60 mg/kg once) were used as the in vivo model. Increased cell uptake and high binding affinity of [18F]-DPA-714 were observed in primary PMs under hyperglycemic stress. These findings were consistent with cellular morphological changes, cell activation, and TSPO up-regulation. [18F]-DPA-714 PET imaging and biodistribution in the eyes of DM rats revealed that inflammation initiates in microglia/macrophages in the early stages (3 weeks and 6 weeks), corresponding with up-regulated TSPO levels. Thus, [18F]-DPA-714 microPET imaging may be an effective approach for the early evaluation of ocular inflammation in DM.


Asunto(s)
Diabetes Mellitus Experimental , Retinopatía Diabética , Radioisótopos de Flúor , Microglía , Tomografía de Emisión de Positrones , Pirazoles , Pirimidinas , Ratas Sprague-Dawley , Animales , Ratas , Tomografía de Emisión de Positrones/métodos , Microglía/metabolismo , Retinopatía Diabética/metabolismo , Retinopatía Diabética/diagnóstico por imagen , Radiofármacos/farmacocinética , Masculino , Macrófagos/metabolismo , Células Cultivadas , Receptores de GABA/metabolismo , Animales Recién Nacidos , Proteínas Portadoras , Receptores de GABA-A
19.
Circ Res ; 135(1): 93-109, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770649

RESUMEN

BACKGROUND: Hyperproliferation of pulmonary arterial smooth muscle cells (PASMCs) and consequent pulmonary vascular remodeling are the crucial pathological features of pulmonary hypertension (PH). Protein methylation has been shown to be critically involved in PASMC proliferation and PH, but the underlying mechanism remains largely unknown. METHODS: PH animal models were generated by treating mice/rats with chronic hypoxia for 4 weeks. SMYD2-vTg mice (vascular smooth muscle cell-specific suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 (deformed epidural auto-regulatory factor-1) domain-containing protein 2 transgenic) or wild-type rats and mice treated with LLY-507 (3-cyano-5-{2-[4-[2-(3-methylindol-1-yl)ethyl]piperazin-1-yl]-phenyl}-N-[(3-pyrrolidin-1-yl)propyl]benzamide) were used to investigate the function of SMYD2 (suppressor of variegation, enhancer of zeste, trithorax and myeloid Nervy DEAF-1 domain-containing protein 2) on PH development in vivo. Primary cultured rat PASMCs with SMYD2 knockdown or overexpression were used to explore the effects of SMYD2 on proliferation and to decipher the underlying mechanism. RESULTS: We demonstrated that the expression of the lysine methyltransferase SMYD2 was upregulated in the smooth muscle cells of pulmonary arteries from patients with PH and hypoxia-exposed rats/mice and in the cytoplasm of hypoxia-induced rat PASMCs. More importantly, targeted inhibition of SMYD2 by LLY-507 significantly attenuated hypoxia-induced pulmonary vascular remodeling and PH development in both male and female rats in vivo and reduced rat PASMC hyperproliferation in vitro. In contrast, SMYD2-vTg mice exhibited more severe PH phenotypes and related pathological changes than nontransgenic mice after 4 weeks of chronic hypoxia treatment. Furthermore, SMYD2 overexpression promoted, while SMYD2 knockdown suppressed, the proliferation of rat PASMCs by affecting the cell cycle checkpoint between S and G2 phases. Mechanistically, we revealed that SMYD2 directly interacted with and monomethylated PPARγ (peroxisome proliferator-activated receptor gamma) to inhibit the nuclear translocation and transcriptional activity of PPARγ, which further promoted mitophagy to facilitate PASMC proliferation and PH development. Furthermore, rosiglitazone, a PPARγ agonist, largely abolished the detrimental effects of SMYD2 overexpression on PASMC proliferation and PH. CONCLUSIONS: Our results demonstrated that SMYD2 monomethylates nonhistone PPARγ and inhibits its nuclear translocation and activation to accelerate PASMC proliferation and PH by triggering mitophagy, indicating that targeting SMYD2 or activating PPARγ are potential strategies for the prevention of PH.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Hipertensión Pulmonar , Hipoxia , Mitofagia , Músculo Liso Vascular , Miocitos del Músculo Liso , PPAR gamma , Arteria Pulmonar , Ratas Sprague-Dawley , Animales , Humanos , Masculino , Ratones , Ratas , Proliferación Celular , Células Cultivadas , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/genética , Hipoxia/complicaciones , Hipoxia/metabolismo , Metilación , Ratones Endogámicos C57BL , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , PPAR gamma/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/metabolismo , Remodelación Vascular
20.
Phys Rev Lett ; 132(19): 197202, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38804947

RESUMEN

The higher-order topological phases have attracted intense attention in the past years, which reveals various intriguing topological properties. Meanwhile, the enrichment of group symmetries with projective symmetry algebras redefines the fundamentals of topological matter and makes Stiefel-Whitney (SW) classes in classical wave systems possible. Here, we report the experimental realization of higher-order topological nodal loop semimetal in an acoustic system and obtain the inherent SW topological invariants. In stark contrast to higher-order topological semimetals relating to complex vector bundles, the hinge and surface states in the SW topological phase are protected by two distinctive SW topological charges relevant to real vector bundles. Our findings push forward the studies of SW class topology in classical wave systems, which also show possibilities in robust high-Q-resonance-based sensing and energy harvesting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...