Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Foods ; 13(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38790869

RESUMEN

The harvest year of maize seeds has a significant impact on seed vitality and maize yield. Therefore, it is vital to identify new seeds. In this study, an on-line near-infrared (NIR) spectra collection device (899-1715 nm) was designed and employed for distinguishing maize seeds harvested in different years. Compared with least squares support vector machine (LS-SVM), k-nearest neighbor (KNN), and extreme learning machine (ELM), the partial least squares discriminant analysis (PLS-DA) model has the optimal recognition performance for maize seed harvest years. Six different preprocessing methods, including Savitzky-Golay smoothing (SGS), standard normal variate transformation (SNV), multiplicative scatter correction (MSC), Savitzky-Golay 1 derivative (SG-D1), Savitzky-Golay 2 derivative (SG-D2), and normalization (Norm), were used to improve the quality of the spectra. The Monte Carlo cross-validation uninformative variable elimination (MC-UVE), competitive adaptive reweighted sampling (CARS), bootstrapping soft shrinkage (BOSS), successive projections algorithm (SPA), and their combinations were used to obtain effective wavelengths and decrease spectral dimensionality. The MC-UVE-BOSS-PLS-DA model achieved the classification with an accuracy of 88.75% using 93 features based on Norm preprocessed spectral data. This study showed that the self-designed NIR collection system could be used to identify the harvested years of maize seed.

2.
Int J Biol Macromol ; 269(Pt 2): 132207, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723823

RESUMEN

To overcome the low efficacy of sonodynamic therapy (SDT) caused by hypoxia in the tumor microenvironment, we developed a multiple anti-tumor nanoplatform with synergistic SDT, photothermal therapy (PTT), and ferroptosis effects. PCN-224@FcCaO2/Mn/dihydroartemisinin/imiquimod/PDA (PFC) was prepared by modified with dihydroartemisinin (DHA), imiquimod (R837), CaO2, ferrocene (Fc) and Mn2+ on the PCN-224 (Cu) to achieve self-replenishment of H2O2/O2 and GSH consumption. FcCaO2 decomposed into H2O2 in the tumor microenvironment, triggering the Fenton effect to produce OH, and Cu2+ reduced the potential loss of OH by the depletion of GSH. Under ultrasonic (US) and laser irradiation, PFC exhibits exciting PTT and SDT effects from polydopamine (PDA) and PCN-224. Mn2+ not only promoted the reaction of H2O2 to produce O2 to effectively enhance SDT but also induced tumor cell apoptosis by Mn2+ combined with DHA. PFC induced ferroptosis via Fe interaction with DHA to produce ROS and reduce the expression of GPX4. The released R837 and tumor-associated antigens from SDT/PTT can produce damage associated molecular patterns (DAMPs), which can initiate adaptive immune responses to kill cancer cells, and released again to promote the tumor immune cycle. What's more, SDT/PTT and ferroptosis combined with aPD-L1 can effectively suppress both primary and distant tumor growth.


Asunto(s)
Indoles , Estructuras Metalorgánicas , Terapia Fototérmica , Polímeros , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Humanos , Animales , Ratones , Terapia Fototérmica/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Línea Celular Tumoral , Nanopartículas/química , Apoptosis/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Terapia Combinada , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/química , Peróxido de Hidrógeno/farmacología , Imiquimod/farmacología , Metalocenos/química , Metalocenos/farmacología
3.
RSC Adv ; 14(20): 13719-13733, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38681837

RESUMEN

Developing low-cost and efficient photocatalyst/co-catalyst systems that promote CO2 reduction remains a challenge. In this work, Ag-Ti3C2Tx composites were made using a self-reduction technique, and unique Ag-Ti3C2Tx/ZnO ternary heterojunction structure photocatalysts were created using an electrostatic self-assembly process. The photocatalyst's close-contact heterogeneous interface increases photogenerated carrier migration efficiency. The combination of Ti3C2Tx and Ag improves the adsorption active sites and reaction centers for ZnO, making it a key site for CO2 adsorption and activation. The best photocatalysts had CO and CH4 reduction efficiencies of 11.985 and 0.768 µmol g-1 h-1, respectively. The CO2 conversion was 3.35 times better than that of pure ZnO, which demonstrated remarkable stability even after four cycle trials with no sacrificial agent. Furthermore, in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) and valence band spectroscopy were utilized to propose the photocatalytic reaction mechanism and electron transfer channels of the Ag-Ti3C2Tx/ZnO system, confirming that CHO* and CO* are the important intermediates in the generation of CH4 and CO. This study introduces a novel method for the development of new and efficient photocatalysts and reveals that Ti3C2Tx MXene is a viable co-catalyst for applications.

4.
iScience ; 27(4): 109535, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617562

RESUMEN

Electrochromic (EC) glazing has garnered significant attention recently as a crucial solution for enhancing energy efficiency in future construction and automotive sectors. EC glazing could significantly reduce the energy usage of buildings compared to traditional blinds and glazing. Despite their commercial availability, several challenges remain, including issues with switching time, leakage of electrolytes, production costs, etc. Consequently, these areas demand more attention and further studies. Among inorganic-based EC materials, tungsten oxide nanostructures are essential due to its outstanding advantages such as low voltage demand, high coloration coefficient, large optical modulation range, and stability. This review will summarize the principal design and mechanism of EC device fabrication. It will highlight the current gaps in understanding the mechanism of EC theory, discuss the progress in material development for EC glazing, including various solutions for improving EC materials, and finally, introduce the latest advancements in photo-EC devices that integrate photovoltaic and EC technologies.

5.
Biol Trace Elem Res ; 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38528285

RESUMEN

Selenium nanoparticle (Nano-Se) is a new type of selenium supplement, which can improve the deficiency of traditional selenium supplements and maintain its physiological activity. Due to industrial pollution and irrational use in agriculture, Cu overexposure often occurs in animals and humans. In this study, Nano-Se alleviated CuSO4-induced testicular Cu accumulation, serum testosterone level decrease, testicular structural damage, and decrease in sperm quality. Meanwhile, Nano-Se reduced the ROS content in mice testis and enhanced the activities of T-AOC, GSH, SOD, and CAT compared with CuSO4 group. Furthermore, Nano-Se alleviated CuSO4-induced apoptosis by increasing the protein expression of Cleaved-Caspase-3, Cleaved-Caspase-9, Cleaved-Caspase-12, and Bax/Bcl-2 compared with CuSO4 group. At the same time, Nano-Se reversed CuSO4-induced increase of γ-H2AX protein expression in mice testis. In conclusion, this study confirmed that Nano-Se could alleviate oxidative stress, apoptosis, and DNA damage in the testis of mice with Cu excess, thereby protecting the spermatogenesis disorder induced by Cu.

6.
RSC Adv ; 14(10): 6865-6873, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38410359

RESUMEN

Flexible sensors have promising applications in the fields of health monitoring and artificial intelligence, which have attracted much attention from researchers. However, the design and manufacture of sensors with multiple sensing functions (like simultaneously having both temperature and pressure sensing capabilities) still present a significant challenge. Here, an ionic thermoelectric sensor for synchronous temperature and pressure sensing was developed on the basis of a carbon microtubes (CMTs)/potassium chloride (KCl)/gelatin composite consisting of gelatin as the polymer matrix, CMTs as the conductive material and KCl as the ion source. The designed CMTs/KCl/gelatin composite with the good ductility (830%) and flexibility can achieve a Seebeck coefficient of 4 mV K-1 and a dual stimulus responsiveness to pressure and temperature. In addition, not only the movement of the human body (e.g., fingers, arms), but also the temperature difference between the human body and the environment, were able to be monitored by the designed CMTs/KCl/gelatin sensors. This study provides a novel strategy for the design and preparation of high-performance flexible sensors by utilizing ion-gel thermoelectric materials and promotes the research of temperature and pressure sensing technologies.

7.
Quant Imaging Med Surg ; 14(2): 1616-1635, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415168

RESUMEN

Background: The high-definition standard (HD-standard) scan mode has been proven to display stents better than the standard (STND) scan mode but with more image noise. Deep learning image reconstruction (DLIR) is capable of reducing image noise. This study examined the impact of HD-standard scan mode with DLIR algorithms on stent and coronary artery image quality in coronary computed tomography angiography (CCTA) via a comparison with conventional STND scan mode and adaptive statistical iterative reconstruction-Veo (ASIR-V) algorithms. Methods: The data of 121 patients who underwent HD-standard mode scans (group A: N=47, with coronary stent) or STND mode scans (group B: N=74, without coronary stent) were retrospectively collected. All images were reconstructed with ASIR-V at a level of 50% (ASIR-V50%) and a level of 80% (ASIR-V80%) and with DLIR at medium (DLIR-M) and high (DLIR-H) levels. The noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), artifact index (AI), and in-stent diameter were measured as objective evaluation parameters. Subjective assessment involved a 5-point scale for overall image quality, image noise, stent appearance, stent artifacts, vascular sharpness, and diagnostic confidence. Diagnostic confidence was evaluated based on the presence or absence of significant stenosis (≥50% lumen reduction). Both subjective and objective evaluations were conducted by two radiologists independently, with kappa and intraclass correlation statistics being used to test the interobserver agreement. Results: There were 76 evaluable stents in group A, and the DLIR-H algorithm significantly outperformed other algorithms, demonstrating the lowest noise (41.6±7.1/41.3±7.2) and AI (32.4±8.9/31.2±10.1), the highest SNR (14.6±3.5/15.0±3.5) and CNR (13.6±3.8/13.9±3.8), and the largest in-stent diameter (2.18±0.61/2.19±0.61) in representing true stent diameter (all P values <0.01), as well as the highest score in each subjective evaluation parameter. In group B, a total of 296 coronary arteries were evaluated, and the DLIR-H algorithm provided the best objective image quality, with statistically superior noise, SNR, and CNR compared with the other algorithms (all P values <0.05). Moreover, the HD-standard mode scan with DLIR provided better image quality and a lower radiation dose than did the STND mode scan with ASIR-V (P<0.01). Conclusions: HD-standard scan mode with DLIR-H improves image quality of both stents and coronary arteries on CCTA under a lower radiation dose.

8.
J Colloid Interface Sci ; 662: 298-312, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38354557

RESUMEN

Tumors produce a hypoxic environment that greatly influences cancer treatment, and conventional chemotherapeutic drugs cannot selectively accumulate in the tumor region because of the lack of a tumor targeting mechanism, causing increased systemic toxicities and side effects. Hence, designing and developing new nanoplatforms that combine multimodal therapeutic regimens is essential to improve tumor therapeutic efficacy. Herein, we report the synthesis of ultrafine Cu nanoparticles loaded with a drug combination of cisplatin (Pt) and 1-methyl-d-tryptophan (1-MT) and externally coated with 5,10,15,20-tetrakis(4-carboxyphenyl)porphyrin (TCPP) photosensitizer, polydopamine (PDA) and CaO2 of MIL-101(Fe) as a new nanoplatform (Cu@MIL-101@PMTPC). The nanoplatform synergistically combined chemodynamic therapy (CDT), photodynamic therapy (PDT), and immunochemotherapy. The Fe3+ in MIL-101(Fe) and the surface Cu nanoparticles exhibited strong ability to consume intracellular glutathione (GSH), thereby generating a Fenton-like response in the tumor microenvironment (TME) with substantial peroxidase (POD)-like and superoxide dismutase (SOD)-like activities. In this design, we used the indoleamine 2,3-dioxygenase (IDO) inhibitor 1-MT to overcome chemotherapy-induced immune escape phenomena including enhanced CD8+ and CD4+ T cell expression, interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α) production, and accelerated immunogenic cell death. The targeted release of cisplatin loaded into Cu@MIL-101@PMTPC also reduced toxic side effects of chemotherapy. TCPP generated a large amount of singlet oxygen (1O2) upon specific laser irradiation to effectively kill tumor cells. CaO2 on the outer layer generated oxygen (O2) and hydrogen peroxide (H2O2) to ameliorate hypoxia in the tumor microenvironment, enhance the PDT effect, and provide a continuous supply of H2O2 for the Fenton-like reaction. Thus, this nanocarrier platform exhibited a powerful chemodynamic, photodynamic, and immunochemotherapeutic cascade, providing a new strategy for cancer treatment.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Cisplatino/farmacología , Peróxido de Hidrógeno , Glutatión , Línea Celular Tumoral , Microambiente Tumoral
9.
Biol Trace Elem Res ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376728

RESUMEN

Inflammation is a complex physiological process that enables the clearance of pathogens and repairing damaged tissues. Elevated serum copper concentration has been reported in cases of inflammation, but the role of copper in inflammatory responses remains unclear. This study used bovine macrophages to establish lipopolysaccharide (LPS)-induced inflammation model. There were five groups in the study: a group treated with LPS (100 ng/ml), a group treated with either copper chelator (tetrathiomolybdate, TTM) (20 µmol) or CuSO4 (25 µmol or 50 µmol) after LPS stimulation, and a control group. Copper concentrations increased in macrophages after the LPS treatment. TTM decreased mRNA expression of pro-inflammatory factors (IL-1ß, TNF-α, IL-6, iNOS, and COX-2), whereas copper supplement increased them. Compared to the control group, TLP4 and MyD88 protein levels were increased in the TTM and copper groups. However, TTM treatment decreased p-p65 and increased IкB-α while the copper supplement showed reversed results. In addition, the phagocytosis and migration of bovine macrophages decreased in the TTM treatment group while increased in the copper treatment groups. Results mentioned above indicated that copper could promote the LPS-induced inflammatory response in bovine macrophages, promote pro-inflammatory factors by activating the NF-кB pathway, and increase phagocytosis capacity and migration. Our study provides a possible targeted therapy for bovine inflammation.

10.
J Colloid Interface Sci ; 661: 606-613, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38310769

RESUMEN

The problem limiting the use of hydrogen evolution reactions in industry is the inability of electrocatalysts to operate stably at high current densities, so the development of stable and efficient electrocatalysts is important for hydrogen production by water splitting. By designing a rational interface engineering not only can the problem of limited number of catalytic sites in the catalyst be solved, but also can facilitate electron transfer, thus enhancing the efficiency of water splitting. Here, we designed a two-stage chemical vapour deposition method to construct NiC/Mo2C nanorod arrays on nickel foam to enhance the electrocatalytic ability of the catalysts, which exhibited efficient HER catalytic activity due to their special tentacle-like nanorod structure and abundant heterogeneous junction surfaces, which brought about abundant active sites as well as promoted electron transfer capability. The resulting catalysts provide current densities of 10, 100 and 500 mA cm-2 with overpotentials of 31, 153 and 264 mV, and exhibit excellent stability at current densities of 10 mA cm-2 for 200 h. This discovery provides a new idea for the rational design of catalysts with special morphologies.

11.
Angew Chem Int Ed Engl ; 63(16): e202319732, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38367015

RESUMEN

Bio-catalysis represents a highly efficient and stereoselective method for the synthesis of valuable chiral compounds, however, the poor stability and limited reaction types of free enzymes restrict their wide application in industrial production. In this work, to overcome these problems, a multifunctional photoenzymatic nanoreactor CALB@COF-Ir was developed through the encapsulation of Candida antarctica lipase B (CALB) in a photosensitive covalent organic framework COF-Ir. This bio-nanocluster serves as efficient catalysts in asymmetric dynamic kinetic resolution (DKR) of secondary amines to give a series of chiral amines in high yields (up to 99 %) and enantioselectivities (up to 99 % ee). The well-designed COF-Ir not only acts as safety cover to prevent CALB from deactivation but promotes racemization of secondary amines via photo-induced hydrogen atom transfer (HAT) process. Photoelectric characterization and TDDFT calculation revealed that (ppy)2Ir units in COF-Ir play crucial role in this photocatalytic system which enhance its photo-redox properties through facilitating the separation between photoelectrons (e-) and holes (h+). Furthermore, the heterogeneous photoenzymatic nanoreactor could be recycled for five rounds with slight decline of catalytic reactivity.

12.
Angew Chem Int Ed Engl ; 63(11): e202319909, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38243685

RESUMEN

Benzoxazole-linked covalent organic frameworks (BO-COFs), despite their exceptional chemical stability, are still in their infancy. This is primarily because the current prevalent methods require the use of special ortho-hydroxyl-substituted aromatic amines as monomers. Herein, we report an innovative strategy to access BO-COFs directly from imine-linked COFs (Im-COFs) without pre-embedded OH groups, using a two-step sequential oxidation/cyclization process. The two-step process included the oxidation of Im-COFs into amide-linked COFs, followed by a copper-catalyzed oxidative cyclization. Five representative BO-COFs were synthesized with retained crystallinity and high oxidization efficiency, offering the potential to convert a significant portion of Im-COFs into BO-COFs. The structural advantages of the newly designed BO-COFs were demonstrated through their application to photocatalytic organic transformations.

13.
Chem Commun (Camb) ; 60(13): 1782-1785, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38252554

RESUMEN

Inspired by the bidentate coordination chemistry of metal ions, we incorporated hydroxyl (OH) and methoxy (OMe) groups into the skeleton of imine-linked COFs to improve their protonation ability via intramolecular hydrogen bonds (O-H⋯NC). In comparison with the pristine COFs possessing monodentate nitrogen coordination sites, OH and OMe functionalized COFs with (N,O)-bidentate chelating sites exhibited up to 13.8 times faster photocatalytic hydrogen evolution rates (HERs).

14.
Environ Toxicol ; 39(4): 2208-2217, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38124272

RESUMEN

Copper is an essential trace element for animal. Excessive intake of copper will cause a large accumulation of copper in the body, especially in the liver, and induce hepatotoxicity, however, there are few studies on the effects of copper on hepatic mitochondrial biogenesis and mitochondrial dynamics. In this study, mice were treated with different doses of CuSO4 (0, 10, 20, and 40 mg/kg) for 21 and 42 days by gavage. The results verified that CuSO4 decreased the content of mitochondrial respiratory chain complexes I-IV in mouse liver. CuSO4 treatment resulted the decrease in the protein and mRNA expression levels of PGC-1α, TFAM, and NRF1, which were the mitochondrial biogenesis regulator proteins. Meanwhile, the proteins involved in mitochondrial fusion were reduced by CuSO4 , such as Mfn1 and Mfn2, however, mitochondrial fission proteins Drip1 and Fis1 were significantly increased. Abovementioned results show that CuSO4 could induce mitochondria damage in the liver of mice, and mitochondrial biogenesis and mitochondrial dynamics are involved in the molecular mechanism of CuSO4 -induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Cobre , Ratones , Animales , Cobre/toxicidad , Cobre/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo
15.
iScience ; 26(12): 108435, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38077124

RESUMEN

Layered double hydroxides (LDHs) are widely used in catalytic field, especially in photocatalysis, benefiting from the ultrathin 2D structure and luxuriant surface functional groups. However, the wide band gap and low utilization rate of solar spectrum affect their photocatalytic performance. Herein, we integrated n-type CoAl-LDH with p-type Cu2O nanoparticles to construct a p-n heterojunction with a strong built-in electric field, which can prevent photoinduced electron-hole pairs from recombination as well as facilitate charge transfer. With the X-ray photoelectron spectroscope and in situ Fourier transform infrared spectroscopy, we confirmed the charge transfer under light illumination complying with the type II-scheme mechanism and analyzed the intermediates during photocatalytic CO2 reduction reaction (CO2RR). The highest yields reached 320.9 µmol h-1 g-1 for CoAl-LDH@Cu2O-60 (LC-60) under 1 h light irradiation, which was about 1.6 times than the pristine CoAl-LDH. The sample also exhibited excellent stability which maintained 84.1% of initial performance after 4 circulations.

16.
RMD Open ; 9(4)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38053456

RESUMEN

OBJECTIVE: The pathogenesis of hand osteoarthritis (OA) remains unknown. Hyperuricaemia, which is related to inflammation, may play a role in hand OA, but evidence is lacking. In a large population-based study, we examined the association between hyperuricaemia and hand OA. METHODS: Participants were from the Xiangya OA Study, a community-based observational study. Hyperuricaemia was defined as serum urate >416 µmol/L in men and >357 µmol/L in women. Radiographic hand OA (RHOA) was defined as presence of the modified Kellgren-Lawrence grade ≥2 in any hand joint. Symptomatic hand OA (SHOA) was defined as presence of both self-reported symptoms and RHOA in the same hand. The associations of hyperuricaemia with RHOA or SHOA were examined using generalised estimating equations. RESULTS: Among 3628 participants, the prevalence of RHOA was higher in participants with hyperuricaemia than those with normouricaemia (26.9% vs 20.9%), with an adjusted OR (aOR) of 1.34 (95% CI 1.11 to 1.61). The associations were consistent in men (aOR 1.33, 95% CI 1.01 to 1.74) and women (aOR 1.35, 95% CI 1.05 to 1.74). Hyperuricaemia was mainly associated with bilateral RHOA (aOR 1.54, 95% CI 1.18 to 2.01) but not unilateral RHOA (aOR 1.13, 95% CI 0.89 to 1.45). Prevalence of SHOA was higher, although statistically insignificant, in participants with hyperuricaemia (aOR 1.39, 95% CI 0.94 to 2.07). CONCLUSION: In this population-based study, hyperuricaemia was associated with a higher prevalence of hand OA. Future prospective studies are required to investigate the temporal relationship. TRIAL REGISTRATION NUMBER: NCT04033757.


Asunto(s)
Articulaciones de la Mano , Hiperuricemia , Osteoartritis , Masculino , Humanos , Femenino , Hiperuricemia/complicaciones , Hiperuricemia/epidemiología , Osteoartritis/epidemiología , Osteoartritis/etiología , Articulaciones de la Mano/diagnóstico por imagen , Mano , Estudios Prospectivos
17.
RSC Adv ; 13(50): 35457-35467, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38115985

RESUMEN

Electrochromic (EC) glass has the potential to significantly improve energy efficiency in buildings by controlling the amount of light and heat that the building exchanges with its exterior. However, the development of EC materials is still hindered by key challenges such as slow switching time, low coloration efficiency, short cycling lifetime, and material degradation. Metal doping is a promising technique to enhance the performance of metal oxide-based EC materials, where adding a small amount of metal into the host material can lead to lattice distortion, a variation of oxygen vacancies, and a shorter ion transfer path during the insertion and de-insertion process. In this study, we investigated the effects of niobium, gadolinium, and erbium doping on tungsten oxide using a single-step solvothermal technique. Our results demonstrate that both insertion and de-insertion current density of a doped sample can be significantly enhanced by metal elements, with an improvement of about 5, 4 and 3.5 times for niobium, gadolinium and erbium doped tungsten oxide, respectively compared to a pure tungsten oxide sample. Moreover, the colouration efficiency increased by 16, 9 and 24% when doping with niobium, gadolinium and erbium, respectively. These findings suggest that metal doping is a promising technique for improving the performance of EC materials and can pave the way for the development of more efficient EC glass for building applications.

18.
Artículo en Inglés | MEDLINE | ID: mdl-37957853

RESUMEN

AIM: The study aimed to study the potential roles and mechanisms of shikonin in gastric cancer by network pharmacology and biological experiments. METHODS: The key genes and targets of shikonin in gastric cancer were predicted by network pharmacology and molecular docking study. The effect of shikonin on the proliferation, migration, and invasion of gastric cancer cells was detected by the CCK8 method, and wound healing and transwell assays. The expression levels of c-Myc and Yap-1 were detected via western blotting in gastric cancer cells after shikonin intervention. RESULTS: The results of network pharmacology revealed the key target genes of shikonin on gastric cancer cells to be c-Myc, Yap-1, AKT1, etc. GO and KEGG analysis showed regulation of cell migration, proliferation, adhesion, and other biological processes, including the PI3K-Akt signaling pathway, HIF-1 signaling pathway, necroptosis, and other cancer pathways. Molecular docking showed shikonin to be most closely combined with protooncogenes c-Myc and Yap-1. In vitro experiments showed that the proliferation rate, migration, and invasion ability of the gastric cancer cell group decreased significantly after shikonin intervention for 24h. The expression levels of c-Myc and Yap-1 in gastric cancer cells were found to be significantly decreased after shikonin intervention. CONCLUSION: This study showed protooncogenes c-Myc and Yap-1 to be the core target genes of shikonin on gastric cancer cells. Shikonin may suppress gastric cancer cells by inhibiting the protooncogenes c-Myc and Yap-1. This suggests that shikonin may be a good candidate for the treatment of gastric cancer.

19.
Ecotoxicol Environ Saf ; 268: 115679, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37976929

RESUMEN

Nickel (Ni) is the most important environmental pollution in the world. Ni has been confirmed to have multi-organ toxicology and carcinogenicity. Recently, Ni also can impair the male reproductive system, however, its precious mechanism still has not been clarified. The current work found that nickel chloride (NiCl2) induced histopathological lesions in testis. And, the Johnsen's score, seminiferous tubule diameter, and spermatogenic epithelium thickness were decreased in NiCl2-treated mice. The number of spermatogonium, primary spermatocyte, and round spermatid also were significantly reduced after Ni treatment. Next the potential molecular mechanism was measured. NiCl2 treatment elevated ROS production in the testis. Additionally, NiCl2 was found to induce apoptosis with features including up-regulation of Bax, cleaved-caspase-3, cleaved-caspase-8, caspase-9, and caspase-12, while down-regulation of Bcl-2 expression. In the meantime, the marker protein of DNA damage γ-H2AX was significantly increased in NiCl2-primed mice testis. To clarify effects of reactive oxygen species (ROS) in apoptosis and DNA damage induced by NiCl2, NiCl2 was used to co-treat antioxidant NAC (N-Acetyl-L-cysteine). NAC weakened ROS production induced by NiCl2, and played an inhibition role in apoptosis and DNA damage. Moreover, co-treatment using NiCl2 and NAC group also eliminated spermatogenesis disorders. In summary, research results reveal the relations of spermatogenesis disorder induced by NiCl2 with apoptosis and DNA damage mediated by ROS and apoptosis in the testis.


Asunto(s)
Apoptosis , Níquel , Ratones , Masculino , Animales , Especies Reactivas de Oxígeno , Níquel/toxicidad , Testículo , Daño del ADN
20.
Angew Chem Int Ed Engl ; 62(51): e202313520, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37921489

RESUMEN

Covalent organic frameworks (COFs) have emerged as efficient heterogeneous photocatalysts for a wide range of relatively simple organic reactions, whereas their application in complex organic transformations, like site-selective functionalization of unactivated C-H bonds, is underexplored, which can be mainly attributed to the lack of highly active organophotocatalytic cores. Herein through bonding oxygen atoms at the N-terminus of quinolines in nonsubstituted quinoline-linked COFs (NQ-COFs), we successfully realized the embedding of active hydrogen atom transfer (HAT) moieties into the skeleton of COFs. This novel designed COF (NQ-COFE5 -O), serving as both an excellent photosensitizer and HAT catalyst, exhibited much higher efficiency in C-H functionalization than the corresponding NQ-COFE5 . Specially, we evaluated the photocatalytic performance of NQ-COFE5 -O on ten different substrates, including quinolines, benzothiazole, and benzoxazole, all of which were transferred to desired products in moderate to high yields (up to 93 %). Furthermore, the as-synthesized NQ-COFE5 -O displayed excellent photostability and could be reused with negligible loss of activity for five catalytic cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA