Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Hum Brain Mapp ; 45(8): e26750, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38853710

RESUMEN

The triple-network model has been widely applied in neuropsychiatric disorders including autism spectrum disorder (ASD). However, the mechanism of causal regulations within the triple-network and their relations with symptoms of ASD remains unclear. 81 male ASD and 80 well matched typically developing control (TDC) were included in this study, recruited from Autism Brain Image Data Exchange-I datasets. Spatial reference-based independent component analysis was used to identify the anterior and posterior part of default-mode network (aDMN and pDMN), salience network (SN), and bilateral executive-control network (ECN) from resting-state functional magnetic resonance imaging data. Spectral dynamic causal model and parametric empirical Bayes with Bayesian model reduction/average were adopted to explore the effective connectivity (EC) within triple-network and the relationship between EC and autism diagnostic observation schedule (ADOS) scores. After adjusting for age and site effect, ASD and TDC groups both showed inhibition patterns. Compared with TDC, ASD group showed weaker self-inhibition in aDMN and pDMN, stronger inhibition in pDMN→aDMN, weaker inhibition in aDMN→LECN, pDMN→SN, LECN→SN, and LECN→RECN. Furthermore, negative relationships between ADOS scores and pDMN self-inhibition strength, as well as with the EC of pDMN→aDMN were observed in ASD group. The present study reveals imbalanced effective connections within triple-networks in ASD children. More attentions should be focused at the pDMN, which modulates the core symptoms of ASD and may serve as an important region for ASD diagnosis and the target region for ASD treatments.


Asunto(s)
Trastorno del Espectro Autista , Red en Modo Predeterminado , Imagen por Resonancia Magnética , Humanos , Trastorno del Espectro Autista/diagnóstico por imagen , Trastorno del Espectro Autista/fisiopatología , Masculino , Niño , Red en Modo Predeterminado/diagnóstico por imagen , Red en Modo Predeterminado/fisiopatología , Conectoma , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Función Ejecutiva/fisiología , Adolescente , Teorema de Bayes
2.
Eur J Radiol Open ; 12: 100564, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38681662

RESUMEN

Background: Respiratory-triggered (RT) and breath-hold are the most common acquisition modalities for magnetic resonance cholangiopancreatography (MRCP). The present study compared the three different acquisition modalities for optimizing the use of MRCP in patients with diseases of the pancreatic and biliary systems. Materials and methods: Three MRCP acquisition modalities were used in this study: conventional respiratory-triggered sampling perfection with application-optimized contrasts using different flip evolutions (RT-SPACE), modified RT-SPACE, and breath-hold (BH)-SPACE. Fifty-eight patients with clinically suspected pancreatic and biliary system disease were included. All image data were acquired on a 1.5 T MR. Scan time and image quality were compared between the three acquisition modalities. Friedman test, which was followed by post-hoc analysis, was performed among triple-scan protocol. Results: There was a significant difference in the mean acquisition time among conventional RT-SPACE, modified RT-SPACE, and BH-SPACE (167.41±32.11 seconds vs 50.84±73.78 seconds vs 18.00 seconds, P <0.001). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were also significantly different among the three groups (P <0.001). The SNR and CNR were higher in the RT-SPACE group than in the BH-SPACE group (P <0.05). However, there were no statistically significant differences (P >0.05) among the 3 groups regarding quality of overall image, image clarity, background inhibition, and visualization of the pancreatic and biliary system. Conclusions: MRCP acquisition with the modified RT-SPACE sequence greatly shortens the acquisition time with comparable quality images. The MRCP acquisition modality could be designed based on the patient's situation to improve the examination pass rate and obtain excellent images for diagnosis.

3.
Front Neurosci ; 17: 1132393, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37065921

RESUMEN

Purpose: Brain glymphatic dysfunction is involved in the pathologic process of acute ischemic stroke (IS). The relationship between brain glymphatic activity and dysfunction in subacute IS has not been fully elucidated. Diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was used in this study to explore whether glymphatic activity was related to motor dysfunction in subacute IS patients. Methods: Twenty-six subacute IS patients with a single lesion in the left subcortical region and 32 healthy controls (HCs) were recruited in this study. The DTI-ALPS index and DTI metrics (fractional anisotropy, FA, and mean diffusivity, MD) were compared within and between groups. Spearman's and Pearson's partial correlation analyses were performed to analyze the relationships of the DTI-ALPS index with Fugl-Meyer assessment (FMA) scores and with corticospinal tract (CST) integrity in the IS group, respectively. Results: Six IS patients and two HCs were excluded. The left DTI-ALPS index of the IS group was significantly lower than that of the HC group (t = -3.02, p = 0.004). In the IS group, a positive correlation between the left DTI-ALPS index and the simple Fugl-Meyer motor function score (ρ = 0.52, p = 0.019) and a significant negative correlation between the left DTI-ALPS index and the FA (R = -0.55, p = 0.023) and MD (R = -0.48, p = 0.032) values of the right CST were found. Conclusions: Glymphatic dysfunction is involved in subacute IS. DTI-ALPS could be a potential magnetic resonance (MR) biomarker of motor dysfunction in subacute IS patients. These findings contribute to a better understanding of the pathophysiological mechanisms of IS and provide a new target for alternative treatments for IS.

4.
Ann Transl Med ; 9(20): 1582, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34790788

RESUMEN

BACKGROUND: Regional excessive iron overload is pernicious to motor functions and cognitive functioning of the brain. The aim of this research was to utilize quantitative susceptibility mapping (QSM) to inspect brain iron accumulation in patients with hypertension (HP), and to evaluate whether it is correlated with physiological parameters. METHODS: Thirty-one HP and 31 age- and sex-matched healthy controls (HC) were included. All participants underwent brain magnetic resonance imaging (MRI), and QSM data were obtained. Differences in brain iron deposition in deep gray matter nuclei of participants were compared between HP and HC. The correlations between iron deposition, body mass index (BMI), maximum systolic blood pressure (SBP), and diastolic blood pressure (DBP) were analyzed. RESULTS: The HP group showed increased susceptibility values in the caudate nucleus (CA), putamen (PU), globus pallidus (GP), and dorsal thalamus (TH), compared with the HC group. There was a significant positive correlation between BMI and the susceptibility values in the dentate nucleus (DN); the maximum SBP and DBP were positively correlated with magnetic susceptibility of the CA, PU, GP, and TH, respectively. CONCLUSIONS: These results are indicative of the role of overload brain iron in deep brain gray matter nuclei in HP and suggest that HP is associated with excess brain iron in certain deep gray matter regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...