Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 638
Filtrar
1.
J Environ Sci (China) ; 147: 1-10, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003031

RESUMEN

Dibromoethane is a widespread, persistent organic pollutant. Biochars are known mediators of reductive dehalogenation by layered FeII-FeIII hydroxides (green rust), which can reduce 1,2-dibromoethane to innocuous bromide and ethylene. However, the critical characteristics that determine mediator functionality are lesser known. Fifteen biochar substrates were pyrolyzed at 600 °C and 800 °C, characterized by elemental analysis, X-ray photo spectrometry C and N surface speciation, X-ray powder diffraction, specific surface area analysis, and tested for mediation of reductive debromination of 1,2-dibromoethane by a green rust reductant under anoxic conditions. A statistical analysis was performed to determine the biochar properties, critical for debromination kinetics and total debromination extent. It was shown that selected plant based biochars can mediate debromination of 1,2-dibromoethane, that the highest first order rate constant was 0.082/hr, and the highest debromination extent was 27% in reactivity experiments with 0.1 µmol (20 µmol/L) 1,2-dibromoethane, ≈ 22 mmol/L FeIIGR, and 0.12 g/L soybean meal biochar (7 days). Contents of Ni, Zn, N, and P, and the relative contribution of quinone surface functional groups were significantly (p < 0.05) positively correlated with 1,2-dibromoethane debromination, while adsorption, specific surface area, and the relative contribution of pyridinic N oxide surface groups were significantly negatively correlated with debromination.


Asunto(s)
Carbón Orgánico , Carbón Orgánico/química , Halogenación , Oxidación-Reducción , Dibromuro de Etileno/química , Modelos Químicos
2.
Trends Microbiol ; 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39218723

RESUMEN

Conventional bulk molecular approaches, often limited by their destructive nature and low spatial resolution, face challenges when probing the intricate dynamics of the plastisphere. Here, we outline a framework employing Raman spectroscopy combined with stable isotope profiling (SIP) to interrogate the physiological function of the plastisphere microbiome and track its evolutionary trajectories.

3.
Environ Sci Technol ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291625

RESUMEN

Nitrous oxide (N2O) is a potent greenhouse gas with various production pathways. N2O reductase (N2OR) is the primary N2O sink, but the distribution of its gene clades, typically nosZI and atypically nosZII, along urbanization gradients remains poorly understood. Here we sampled soils from forests, parks, and farmland across eight provinces in eastern China, using high-throughput sequencing to distinguish between two N2O-reducing bacteria clades. A deterministic process mainly determined assemblies of the nosZI communities. Homogeneous selection drove nosZI deterministic processes, and both homogeneous and heterogeneous selection influenced nosZII. This suggests nosZII is more sensitive to environmental changes than nosZI, with significant changes in community structure over time or space. Ecosystems with stronger anthropogenic disturbance, such as urban areas, provide diverse ecological niches for N2O-reducing bacteria (especially nosZII) to adapt to environmental fluctuations. Structural equation modeling (SEM) and correlation analyses revealed that pH significantly influences the community composition of both N2O-reducing bacteria clades. This study underscores urbanization's impact on N2O-reducing bacteria in urban soils, highlighting the importance of nosZII and survival strategies. It offers novel insights into the role of atypical denitrifiers among N2O-reducing bacteria, underscoring their potential ecological importance in mitigating N2O emissions from urban soils.

4.
Science ; 385(6713): eadn3747, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39236181

RESUMEN

Agriculture's global environmental impacts are widely expected to continue expanding, driven by population and economic growth and dietary changes. This Review highlights climate change as an additional amplifier of agriculture's environmental impacts, by reducing agricultural productivity, reducing the efficacy of agrochemicals, increasing soil erosion, accelerating the growth and expanding the range of crop diseases and pests, and increasing land clearing. We identify multiple pathways through which climate change intensifies agricultural greenhouse gas emissions, creating a potentially powerful climate change-reinforcing feedback loop. The challenges raised by climate change underscore the urgent need to transition to sustainable, climate-resilient agricultural systems. This requires investments that both accelerate adoption of proven solutions that provide multiple benefits, and that discover and scale new beneficial processes and food products.


Asunto(s)
Agricultura , Cambio Climático , Gases de Efecto Invernadero , Productos Agrícolas/crecimiento & desarrollo , Ambiente , Agroquímicos , Suelo/química
5.
Glob Chang Biol ; 30(8): e17466, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39152655

RESUMEN

Global patterns in soil microbiomes are driven by non-linear environmental thresholds. Fertilization is known to shape the soil microbiome of terrestrial ecosystems worldwide. Yet, whether fertilization influences global thresholds in soil microbiomes remains virtually unknown. Here, utilizing optimized machine learning models with Shapley additive explanations on a dataset of 10,907 soil samples from 24 countries, we discovered that the microbial community response to fertilization is highly dependent on environmental contexts. Furthermore, the interactions among nitrogen (N) addition, pH, and mean annual temperature contribute to non-linear patterns in soil bacterial diversity. Specifically, we observed positive responses within a soil pH range of 5.2-6.6, with the influence of higher temperature (>15°C) on bacterial diversity being positive within this pH range but reversed in more acidic or alkaline soils. Additionally, we revealed the threshold effect of soil organic carbon and total nitrogen, demonstrating how temperature and N addition amount interacted with microbial communities within specific edaphic concentration ranges. Our findings underscore how complex environmental interactions control soil bacterial diversity under fertilization.


Asunto(s)
Bacterias , Fertilizantes , Microbiota , Nitrógeno , Microbiología del Suelo , Suelo , Temperatura , Nitrógeno/análisis , Nitrógeno/metabolismo , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Suelo/química , Carbono/análisis , Carbono/metabolismo , Aprendizaje Automático , Biodiversidad
6.
Nat Food ; 5(8): 673-683, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39103543

RESUMEN

Phosphate-solubilizing bacteria (PSB) are crucial for enhancing phosphorus bioavailability and regulating phosphorus transformation processes. However, the in situ phosphorus-solubilizing activity and the link between phenotypes and genotypes for PSB remain unidentified. Here we employed single-cell Raman spectroscopy combined with heavy water to discern and quantify soil active PSB. Our results reveal that PSB abundance and in situ activity differed significantly between soil types and fertilization treatments. Inorganic fertilizer input was the key driver for active PSB distribution. Targeted single-cell sorting and metagenomic sequencing of active PSB uncovered several low-abundance genera that are easily overlooked within bulk soil microbiota. We elucidate the underlying functional genes and metabolic pathway, and the interplay between phosphorus and carbon cycling involved in high phosphorus solubilization activity. Our study provides a single-cell approach to exploring PSB from native environments, enabling the development of a microbial solution for the efficient agronomic use of phosphorus and mitigating the phosphorus crisis.


Asunto(s)
Bacterias , Fertilizantes , Fosfatos , Fósforo , Microbiología del Suelo , Suelo , Fósforo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Fosfatos/metabolismo , Suelo/química , Fertilizantes/análisis , Análisis de la Célula Individual , Microbiota/fisiología , Solubilidad
7.
Water Res ; 265: 122302, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39178591

RESUMEN

Enriching microorganisms using a 0.22-µm pore size is a general pretreatment procedure in river microbiome research. However, it remains unclear the extent to which this method loses microbiome information. Here, we conducted a comparative metagenomics-based study on microbiomes with sizes over 0.22 µm (large-sized) and between 0.22 µm and 0.1 µm (small-sized) in a subtropical river. Although the absolute concentration of small-sized microbiome was about two orders of magnitude lower than that of large-sized microbiome, sequencing only large-sized microbiome resulted in a significant loss of microbiome diversity. Specifically, the microbial community was different between two sizes, and 347 genera were only detected in small-sized microbiome. Small-sized microbiome had much more diverse viral community than large-sized fraction. The viruses had abundant ecological functions and were hosted by 825 species of 169 families, including pathogen-related families. Small-sized microbiome had distinct antimicrobial resistance risks from large-sized microbiome, showing an enrichment of eight antibiotic resistance gene (ARG) types as well as the detection of 140 unique ARG subtypes and five enriched risk rank I ARGs. Draft genomes of five major resistant pathogens having diverse ecological and pollutant-degrading functions were only assembled in small-sized microbiome. These findings provide novel insights into river ecosystems, and highlight the overlooked small-sized microbiome in the environment.


Asunto(s)
Ecosistema , Microbiota , Ríos , Ríos/microbiología , Metagenómica , Bacterias/genética
8.
Glob Chang Biol ; 30(8): e17477, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39136189

RESUMEN

Human activities have profoundly altered the Earth's phosphorus (P) cycling process and its associated microbial communities, yet their global distribution pattern and response to human influences remain unclear. Here, we estimated the abundances of P-cycling genes from 3321 global soil metagenomic samples and mapped the global distribution of five key P-cycling processes, that is, organic phosphoester hydrolysis, inorganic phosphorus solubilization, two-component system, phosphotransferase system, and transporters. Structural equation modeling and random forest analysis were employed to assess the impact of anthropogenic and environmental factors on the abundance of P-cycling genes. Our findings suggest that although less significant than the climate and soil profile, human-related factors, such as economic activities and population, are important drivers for the variations in P-cycling gene abundance. Notably, the gene abundances were increased parallel to the extent of human intervention, but generally at low and moderate levels of human activities. Furthermore, we identified critical genera, such as Pseudomonas and Lysobacter, which were sensitive to the changes in human activities. This study provides insights into the responses of P-cycling microbes to human activities at a global scale, enhancing our understanding of soil microbial P cycling and underscoring the importance of sustainable human activities in the Earth's biogeochemical cycle.


Asunto(s)
Fósforo , Microbiología del Suelo , Fósforo/metabolismo , Fósforo/análisis , Actividades Humanas , Humanos , Bacterias/genética , Bacterias/metabolismo , Microbiota , Suelo/química
9.
Nat Commun ; 15(1): 5866, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997249

RESUMEN

The estuarine plastisphere, a novel ecological habitat in the Anthropocene, has garnered global concerns. Recent geochemical evidence has pointed out its potential role in influencing nitrogen biogeochemistry. However, the biogeochemical significance of the plastisphere and its mechanisms regulating nitrogen cycling remain elusive. Using 15N- and 13C-labelling coupled with metagenomics and metatranscriptomics, here we unveil that the plastisphere likely acts as an underappreciated nitrifying niche in estuarine ecosystems, exhibiting a 0.9 ~ 12-fold higher activity of bacteria-mediated nitrification compared to surrounding seawater and other biofilms (stone, wood and glass biofilms). The shift of active nitrifiers from O2-sensitive nitrifiers in the seawater to nitrifiers with versatile metabolisms in the plastisphere, combined with the potential interspecific cooperation of nitrifying substrate exchange observed among the plastisphere nitrifiers, collectively results in the unique nitrifying niche. Our findings highlight the plastisphere as an emerging nitrifying niche in estuarine environment, and deepen the mechanistic understanding of its contribution to marine biogeochemistry.


Asunto(s)
Bacterias , Biopelículas , Estuarios , Nitrificación , Agua de Mar , Agua de Mar/microbiología , Bacterias/metabolismo , Bacterias/genética , Biopelículas/crecimiento & desarrollo , Ecosistema , Microbiota/fisiología , Metagenómica , Filogenia , Ciclo del Nitrógeno , Nitrógeno/metabolismo , Isótopos de Nitrógeno/metabolismo
10.
Glob Chang Biol ; 30(7): e17419, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39023004

RESUMEN

Antibiotic resistance genes (ARGs) have moved into focus as a critically important response variable in global change biology, given the increasing environmental and human health threat posed by these genes. However, we propose that elevated levels of ARGs should also be considered a factor of global change, not just a response. We provide evidence that elevated levels of ARGs are a global change factor, since this phenomenon is linked to human activity, occurs globally, and affects biota. We explain why ARGs could be considered the global change factor, rather than the organisms containing them; and we highlight the difference between ARGs and the presence of antibiotics, which are not necessarily linked since elevated levels of ARGs are caused by multiple factors. Importantly, shifting the perspective to elevated levels of ARGs as a factor of global change opens new avenues of research, where ARGs can be the experimental treatment. This includes asking questions about how elevated ARG levels interact with other global change factors, or how ARGs influence ecosystem processes, biodiversity or trophic relationships. Global change biology stands to profit from this new framing in terms of capturing more completely the real extent of human impacts on this planet.


Asunto(s)
Farmacorresistencia Microbiana , Humanos , Farmacorresistencia Microbiana/genética , Antibacterianos/farmacología , Cambio Climático , Ecosistema , Actividades Humanas
11.
J Hazard Mater ; 476: 135133, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38986408

RESUMEN

Earthworms can redistribute soil microbiota, and thus might affect the profile of virulence factor genes (VFGs) which are carried by pathogens in soils. Nevertheless, the knowledge of VFG profile in the earthworm guts and its interaction with earthworm gut microbiome is still lacking. Herein, we characterized earthworm gut and soil microbiome and VFG profiles in natural and agricultural ecosystems at a national scale using metagenomics. VFG profiles in the earthworm guts significantly differed from those in the surrounding soils, which was mainly driven by variations of bacterial communities. Furthermore, the total abundance of different types of VFGs in the earthworm guts was about 20-fold lower than that in the soils due to the dramatic decline (also by approximately 20-fold) of VFG-carrying bacterial pathogens in the earthworm guts. Additionally, five VFGs related to nutritional/metabolic factors and stress survival were identified as keystones merely in the microbe-VFG network in the earthworm guts, implying their pivotal roles in facilitating pathogen colonization in earthworm gut microhabitats. These findings suggest the potential roles of earthworms in reducing risks related to the presence of VFGs in soils, providing novel insights into earthworm-based bioremediation of VFG contamination in terrestrial ecosystems.


Asunto(s)
Ecosistema , Oligoquetos , Microbiología del Suelo , Factores de Virulencia , Oligoquetos/microbiología , Animales , Factores de Virulencia/genética , Microbiota , Bacterias/genética , Bacterias/metabolismo , Bacterias/patogenicidad
12.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39073904

RESUMEN

Antibiotic resistance in plant-associated microbiomes poses significant risks for agricultural ecosystems and human health. Although accumulating evidence suggests a role for plant genotypes in shaping their microbiome, almost nothing is known about how the changes of plant genetic information affect the co-evolved plant microbiome carrying antibiotic resistance genes (ARGs). Here, we selected 16 wheat cultivars and experimentally explored the impact of host genetic variation on phyllosphere microbiome, ARGs, and metabolites. Our results demonstrated that host genetic variation significantly influenced the phyllosphere resistomes. Wheat genotypes exhibiting high phyllosphere ARGs were linked to elevated Pseudomonas populations, along with increased abundances of Pseudomonas aeruginosa biofilm formation genes. Further analysis of 350 Pseudomonas spp. genomes from diverse habitats at a global scale revealed that nearly all strains possess multiple ARGs, virulence factor genes (VFGs), and mobile genetic elements (MGEs) on their genomes, albeit with lower nucleotide diversity compared to other species. These findings suggested that the proliferation of Pseudomonas spp. in the phyllosphere significantly contributed to antibiotic resistance. We further observed direct links between the upregulated leaf metabolite DIMBOA-Glc, Pseudomonas spp., and enrichment of phyllosphere ARGs, which were corroborated by microcosm experiments demonstrating that DIMBOA-Glc significantly enhanced the relative abundance of Pseudomonas spp. Overall, alterations in leaf metabolites resulting from genetic variation throughout plant evolution may drive the development of highly specialized microbial communities capable of enriching phyllosphere ARGs. This study enhances our understanding of how plants actively shape microbial communities and clarifies the impact of host genetic variation on the plant resistomes.


Asunto(s)
Variación Genética , Microbiota , Hojas de la Planta , Pseudomonas , Triticum , Triticum/microbiología , Hojas de la Planta/microbiología , Pseudomonas/genética , Pseudomonas/metabolismo , Factores de Virulencia/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Genotipo , Farmacorresistencia Microbiana/genética , Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/genética
13.
Ecol Lett ; 27(6): e14462, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39031813

RESUMEN

The rhizosphere influence on the soil microbiome and function of crop wild progenitors (CWPs) remains virtually unknown, despite its relevance to develop microbiome-oriented tools in sustainable agriculture. Here, we quantified the rhizosphere influence-a comparison between rhizosphere and bulk soil samples-on bacterial, fungal, protists and invertebrate communities and on soil multifunctionality across nine CWPs at their sites of origin. Overall, rhizosphere influence was higher for abundant taxa across the four microbial groups and had a positive influence on rhizosphere soil organic C and nutrient contents compared to bulk soils. The rhizosphere influence on abundant soil microbiomes was more important for soil multifunctionality than rare taxa and environmental conditions. Our results are a starting point towards the use of CWPs for rhizosphere engineering in modern crops.


Asunto(s)
Productos Agrícolas , Microbiota , Rizosfera , Microbiología del Suelo , Productos Agrícolas/microbiología , Suelo/química , Hongos/fisiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Invertebrados/microbiología , Invertebrados/fisiología
14.
Environ Sci Technol ; 58(25): 11027-11040, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38857061

RESUMEN

Conversion from natural lands to cropland, primarily driven by agricultural expansion, could significantly alter soil microbiome worldwide; however, influences of forest-to-cropland conversion on microbial hierarchical interactions and ecosystem multifunctionality have not been fully understood. Here, we examined the effects of forest-to-cropland conversion on intratrophic and cross-trophic microbial interactions and soil ecosystem multifunctionality and further disclosed their underlying drivers at a national scale, using Illumina sequencing combined with high-throughput quantitative PCR techniques. The forest-to-cropland conversion significantly changed the structure of soil microbiome (including prokaryotic, fungal, and protistan communities) while it did not affect its alpha diversity. Both intrakingdom and interkingdom microbial networks revealed that the intratrophic and cross-trophic microbial interaction patterns generally tended to be more modular to resist environmental disturbance introduced from forest-to-cropland conversion, but this was insufficient for the cross-trophic interactions to maintain stability; hence, the protistan predation behaviors were still disturbed under such conversion. Moreover, key soil microbial clusters were declined during the forest-to-cropland conversion mainly because of the increased soil total phosphorus level, and this drove a great degradation of the ecosystem multifunctionality (by 207%) in cropland soils. Overall, these findings comprehensively implied the negative effects of forest-to-cropland conversion on the agroecosystem, from microbial hierarchical interactions to ecosystem multifunctionality.


Asunto(s)
Ecosistema , Bosques , Microbiología del Suelo , Microbiota , Agricultura , Suelo , Productos Agrícolas
15.
Ying Yong Sheng Tai Xue Bao ; 35(4): 1150-1158, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38884250

RESUMEN

Functional traits are indicators of the responses and adaptation of organisms to environmental changes and cascade to a series of ecosystem functions. The functional traits of soil animals are sensitive to environmental factors and may characterize and predict the changes of ecosystem functions. Multiple dimensions of biodiversity that combing species, phylogenetic, and functional diversity improves the understanding of distribution patterns, community assembly mechanisms and ecosystem functions of soil animals. In this review, we listed the categories of soil animal functional traits and their ecological significance, and summarized current researches on the responses of soil animal communities to environmental changes and the community assembly processes based on trait-based approaches. We proposed to strengthen the study on the impacts of eco-evolution processes of biotic interactions to soil animal functional traits, establish the database of soil animal functional traits, and apply trait-based approaches in the ecological restoration in the future, which would benefit soil biodiversity conservation and sustainability of soil ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Suelo , Animales , Conservación de los Recursos Naturales , Ecología , Distribución Animal
16.
Environ Sci Technol ; 58(27): 12008-12017, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920967

RESUMEN

International arsenic trade, physical and virtual, has resulted in considerable transfer of arsenic pollution across regions. However, no study has systematically captured, estimated, and compared physical and virtual arsenic trade and its relevant impacts. This study combines material flow analysis and embodied emission factors to estimate embedded (including direct and indirect trade) and embodied arsenic trade during 1990-2019, encompassing 18 arsenic-containing products among 244 countries. Global embedded arsenic trade increased considerably from 47 ± 7.3 to 450 ± 68 kilotonnes (kt) during this time and was dominated by indirect arsenic trade, contributing 94 and 90% to global arsenic trade in 1990 and 2019, respectively. Since the 1990s, global arsenic trade centers and the main flows have shifted from European and American markets to developing countries. The mass of arsenic involved in embodied trade increased from 87.5 ± 26 kt in 1990 to 800 ± 236 kt in 2019. Direct trade and indirect trade aggravate arsenic environmental emissions in major importing countries, like China, while embodied trade aggravates arsenic environmental emissions in major exporting countries, like Peru and Chile. The trade-related arsenic pollution transfer calls for a rational arsenic emission responsibility-sharing mechanism and corresponding policy recommendations for different trading countries.


Asunto(s)
Arsénico , Comercio , Contaminación Ambiental
17.
Fundam Res ; 4(3): 415-416, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38933209
18.
Water Res ; 260: 121957, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941868

RESUMEN

Metals/metalloids, being ubiquitous in the environment, can function as a co-selective pressure on antibiotic resistance genes (ARGs) threatening human health. However, the effect of geogenic arsenic (As) on groundwater antibiotic resistomes and their health risks remain largely unknown. Here, we systematically analyzed bacterial communities, pathogenic bacteria, antibiotic resistomes, and in-situ multidrug-resistant isolates with the assessment of the health risk of ARGs and the pathogenicity of their hosts in high As groundwater from the Hetao basin, Northwestern China. We found that long-term geogenic As exposure shifted the assembly of resistomes and resulted in a high abundance and diversity of ARGs in groundwater. Significantly positive associations among As, As cycling genes, ARGs, and mobile genetic elements (MGEs) revealed by network and pathway analyses, together with genetic evidence of As-tolerant multidrug-resistant isolates by whole genomic sequencing, robustly indicate the geogenic As-induced co-selection for antibiotic resistance in groundwater. Variance partitioning analysis further confirmed the determinative role of geogenic As in groundwater resistomes, with As species and As cycling genes as the core abiotic and biotic drivers, respectively. More seriously, geogenic As accelerated the prevalence of high-risk ARGs and multidrug-resistant bacteria. Our findings highlight the significance of geogenic As-induced co-selection for antibiotic resistance in groundwater and the hidden role of geogenic metals/metalloids in increasing antibiotic resistance. This study provides a basis for groundwater management of both high As and ARGs for human health.


Asunto(s)
Arsénico , Agua Subterránea , Agua Subterránea/microbiología , Agua Subterránea/química , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , China , Contaminantes Químicos del Agua , Bacterias/efectos de los fármacos , Bacterias/genética
19.
Environ Int ; 190: 108823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38908273

RESUMEN

Microbially-mediated arsenic biotransformation plays a pivotal role in the biogeochemical cycling of arsenic; however, the presence of arsenic biotransformation genes (ABGs) in urban dust remains unclear. To investigate the occurrence and spatiotemporal distributions of ABGs, a total of one hundred and eighteen urban dust samples were collected from different districts of Xiamen city, China in summer and winter. Although inorganic arsenic species, including arsenate [As(V)] and arsenite [As(III)], were found to be predominant, the methylated arsenicals, particularly trimethylarsine oxide [TMAs(V)O] and dimethylarsenate [DMAs(V)], were detected in urban dust. Abundant ABGs were identified in urban dust via AsChip analysis (a high-throughput qPCR chip for ABGs), of which As(III) S-adenosylmethionine methyltransferase genes (arsM), As(V) reductase genes (arsC), As(III) oxidase genes (aioA), As(III) transporter genes (arsB), and arsenic-sensing regulator genes (arsR) were the most prevalent, collectively constituting more than 90 % of ABGs in urban dust. Microbes involved in arsenic methylation were assigned to bacteria (e.g., Actinomycetes and Alphaproteobacteria), archaea (e.g., Halobacteria), and eukaryotes (e.g., Chlamydomonadaceae) in urban dust via the arsM amplicon sequencing. Temperature, a season-dependent environmental factor, profoundly affected the abundance of ABGs and the composition of microbes involved in arsenic methylation. This study provides new insights into the presence of ARGs within the urban dust.


Asunto(s)
Arsénico , Biotransformación , Polvo , Polvo/análisis , Arsénico/análisis , Arsénico/metabolismo , China , Monitoreo del Ambiente , Ciudades , Bacterias/genética , Arsenicales/metabolismo , Arsenicales/análisis , Archaea/genética
20.
Environ Int ; 190: 108846, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925006

RESUMEN

Natural environments play a crucial role in transmission of antimicrobial resistance (AMR). Development of methods to manage antibiotic resistance genes (ARGs) in natural environments are usually limited to the laboratory or field scale, partially due to the complex dynamics of transmission between different environmental compartments. Here, we conducted a nine-year longitudinal profiling of ARGs at a watershed scale, and provide evidence that restrictions on livestock farms near water bodies significantly reduced riverine ARG abundance. Substantial reductions were revealed in the relative abundance of genes conferring resistance to aminoglycosides (42%), MLSB (36%), multidrug (55%), tetracyclines (53%), and other gene categories (59%). Additionally, improvements in water quality were observed, with distinct changes in concentrations of dissolved reactive phosphorus, ammonium, nitrite, pH, and dissolved oxygen. Antibiotic residues and other pharmaceuticals and personal care products (PPCPs) maintain at a similarly low level. Microbial source tracking demonstrates a significant decrease in swine fecal indicators, while human fecal pollution remains unchanged. These results suggest that the reduction in ARGs was due to a substantial reduction in input of antibiotic resistant bacteria and genes from animal excreta. Our findings highlight the watershed as a living laboratory for understanding the dynamics of AMR, and for evaluating the efficacy of environmental regulations, with implications for reducing environmental risks associated with AMR on a global scale.


Asunto(s)
Antibacterianos , Granjas , Ganado , Animales , Antibacterianos/farmacología , Porcinos , Farmacorresistencia Microbiana/genética , Farmacorresistencia Bacteriana/genética , Heces/microbiología , Crianza de Animales Domésticos/métodos , Calidad del Agua , Monitoreo del Ambiente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...