Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros












Intervalo de año de publicación
1.
Microbiome Res Rep ; 3(2): 21, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841414

RESUMEN

Aim: Non-salt Suancai is an acidic fermented vegetable consumed by the Chinese Yi ethnic group. Traditionally, it is produced by fermentation without salt in a cold environment. The present study aimed to investigate the metabolite and microbial characteristics, and the effects of substrates/suppliers ingredients on non-salt Suancai. Methods: A simulated fermentation system of non-salt Suancai was constructed by using different substrates/suppliers' ingredients. The coherence and differential detection of the metabolite and microbial characteristics were done through non-target metabolomic and metagenomic analysis. Results: Lactic acid was the predominant organic acid across all samples. The enumeration of the Lactic acid bacteria showed no discernible differences between study groups, but that of yeast was highest in the mustard leaf stem (Brassica juncea var. latipa). The three major biological metabolic pathways were metabolism, environmental information, and genetic information processing based on the KEGG database. The metabolite diversity varied with the substrate/supplier of ingredients based on the PLS-DA plot. Lactiplantibacillus, Leuconostoc, and Lactococcus were prevalent in all samples but differentially. The microbial diversity and richness varied significantly, with 36~291 species being identified. Among the various substrates collected from the same supplier, 29, 59, and 29 differential species were identified based on LEfSe [linear discriminant analysis (LDA) > 2, P < 0.05]. Leuconostoc citreum, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Lactiplantibacillus plantarum, and Leuconostoc lactis were likely to be used as the species to discriminate samples collected from different suppliers. Conclusions: This research contributed to the exploration of microbial and metabolite characteristics behind the ingredient restriction of non-salt Suancai using traditional technology.

2.
Heliyon ; 10(5): e27145, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468973

RESUMEN

"Golden-flower" Tibetan tea (GTT) is an innovative dark tea fermented via fungus Eurotium cristatum. To study GTT effects on alleviating the symptoms of type 1 diabetes mellitus (T1DM), GTT's extract (GTTE) was prepared. GTTE chemical compositions were analyzed via HPLC, pyrolysis-gas chromatography-mass (Py-GC-MS) spectrometry analysis, and chemistry analyses. GTTE effects on T1DM were explored on T1DM mice model induced by streptozotocin (STZ). GTTE was composed mainly of tea pigment theabrownin (TB) (49.18%), with high percentages of polysaccharide (16.93%), protein (10.15%), polyphenols (13.90%), amino acids (5.89%), caffeine (1.83%), and flavonoids (0.67%). Py-GC-MS results exhibited that GTTE constituted of phenols, lipids, sugars, and proteins. GTTE attenuated T1DM conditions of mice, relieved their liver and pancreatic injury, restored damaged islet cells, decreased oxidative stress by increasing superoxide dismutase (SOD) and catalase (CAT) levels, modulated cytokine expression leading to the decreasing pro-inflammatory cytokines TNF-α and IL-6, increased anti-inflammatory cytokines IL-4 to improve inflammatory responses, and optimized gut microbiota composition and structure based on high-throughput 16S rDNA sequencing, suggesting multi-channel anti-diabetes mechanisms.

3.
Stem Cell Res ; 76: 103328, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38335661

RESUMEN

Fibroblasts were extracted from the scalp of a healthy 55-year-old male and subsequently transformed into pluripotent stem cells by introducing episomal plasmids harboring essential reprogramming factors. These induced pluripotent stem cells exhibited a normal karyotype and demonstrated the capacity to differentiate into all three germ layers, as confirmed through teratoma assays. This specific cell line serves as a valuable reference for comparative investigations alongside other induced pluripotent stem cell lines generated from somatic cells of patients afflicted by genetic neurodegenerative disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Teratoma , Humanos , Masculino , Persona de Mediana Edad , Diferenciación Celular , Línea Celular , Reprogramación Celular , Fibroblastos/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Plásmidos , Teratoma/metabolismo
4.
Foods ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338534

RESUMEN

Penthorum chinense Pursh (Penthoraceae) is a traditional herb used in Miao medical systems that is also processed into foods (e.g., tea products) in China. Different processing methods significantly affect the volatile compounds, phenolic constituents, and biological activities. This study aimed to produce P. chinense green tea leaves (GTL), black tea leaves (BTL), and untreated leaves (UL) to investigate differences in their flavor substances, functional components, antioxidant activity, alcohol dehydrogenase (ADH) activity, and acetaldehyde dehydrogenase (ALDH) activity. The results showed that 63, 56, and 56 volatile compounds were detected in UL, GTL, and BTL, respectively, of which 43 volatile compounds were identified as differential metabolites among them. The total phenolic content (97.13-179.34 mg GAE/g DW), flavonoid content (40.07-71.93 mg RE/g DW), and proanthocyanidin content (54.13-65.91 mg CE/g DW) exhibited similar trends, decreasing in the order of UL > BTL > GTL. Fourteen phenolic compounds were determined, of which gallic acid, (-)-epicatechin, and pinocembrin 7-O-glucoside showed a sharp decrease in content from UL to BTL, while the content of pinocembrin 7-O-(3″-O-galloy-4″, 6″-hexahydroxydiphenoyl)-glucoside and pinocembrin significantly increased. GTL showed better DPPH/ABTS·+ scavenging ability and ferric-reducing ability than UL. The ADH and ALDH activities decreased in the order of GTL > UL > BTL. Therefore, tea products made with P. chinense leaves contained an abundance of functional compounds and showed satisfactory antioxidant and hepatoprotective activities, which are recommended for daily consumption.

5.
Small ; 20(27): e2307759, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38269473

RESUMEN

Two types of functional surfaces with the same roughness but completely different surface topographies are prepared, namely positively skewed surfaces filled with micropillar arrays (Sa ≈4.4 µm, Ssk >0) and negatively skewed surfaces filled with microcavity arrays (Sa ≈4.4 µm, Ssk <0), demonstrating promoting droplet splashing. Remarkably, the critical Weber number for generating satellite droplets on the negatively skewed surfaces is significantly lower than that on the positively skewed surfaces, indicating that the negatively skewed surface with microcavity arrays is more likely to promote droplet splashing. It is mainly attributed to the fact that air on the negatively skewed surface can make the liquid film take on a Cassie-Baxter state on the surface so that the stabilizing capillary force of the liquid film exceeds the destabilizing stress of the air film. Moreover, the surface topography promoting droplet spreading and the mechanical properties of three-phase moving contact lines are analyzed from the perspective of microscopic interface mechanics. Finally, it is demonstrated the designed positively skewed surfaces can be employed for large-area heat dissipation by means of high-efficiency evaporation.

6.
Food Res Int ; 174(Pt 1): 113650, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37986488

RESUMEN

To investigate the colonization and impact of the specific Lactiplantibacillus plantarum strains, four isolated strains were applied in pickled Suancai which is a traditional pickled mustard (Brassica juncea). Results showed that strain-8 with the highest lactic acid bacteria (LAB) counts and acetic acid (p < 0.05). There were 11.42 % ∼ 32.35 % differential volatile compounds detected, although nitriles, esters, and acids were predominant. L. plantarum disturbed the microbial community, in which the microbial composition of strain-11 was most similar to the naturally fermented sample. Amino acids, carbohydrate metabolism, and metabolism of cofactors and vitamins were the main functional classes because of the similar dominant microbes (Lactiplantibacillus and Levilactobacillus). The functional units were separated based on NMDS analysis, in which bacterial chemotaxis, amino acid-related units, biotin metabolism, fatty acid biosynthesis, and citrate cycle were significantly different calculated by metagenomeSeq and Benjamin-Hochberg methods (p < 0.05). The contents of most flavor compounds were consistent with their corresponding enzymes. In particular, glucosinolates metabolites were different and significantly related to the myrosinase and metabolic preference of LAB. Therefore, this study revealed the impact mechanism of the specific L. plantarum strains and provided a perspective for developing microbial resources to improve the flavor diversity of fermented vegetables.


Asunto(s)
Lactobacillales , Verduras , Ácido Acético , Aminoácidos , Citratos
7.
ACS Omega ; 8(36): 32526-32535, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37720798

RESUMEN

The varying antioxidant potential of Citrus medica associated with different geographical regions makes the evaluation of C. medica for natural antioxidants essential. This work aimed to compare the antioxidant potential of the phenolic constituents from different geographical regions. The chemical compositions were characterized by ultra-high-performance liquid chromatography (UPLC) coupled with mass spectrometry (MS). A total of 67 compounds including 29 coumarin derivatives and 38 flavonoids were tentatively identified by UPLC-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). To evaluate the quality of C. medica from seven different geographical regions, water and 80% methanol fractions were subjected to quantitative analysis. Antioxidant potentials were determined by 2,2-diphenyl-1-picrylhydrazyl, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), iron chelation, and reduction methods. The samples collected from Sichuan province showed the highest content of total phenolic compounds. Combined with antioxidant results, the sample from Sichuan province presented good antioxidant activity. This study also showed that total phenolic compounds significantly contributed to the antioxidant activities (2,2-azinobis(3-ethyl-benzothiazoline-6-sulphonic acid) and radical scavenging activity) of C. medica samples (p < 0.01). These results provided chemical information and potential antioxidant value for further research, providing ideal evidence for the quality evaluation and exploitation of the source.

8.
Langmuir ; 39(33): 11925-11933, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37566515

RESUMEN

The impact of droplets on particles involves a wide range of complex phenomena and mechanisms, including bubble nucleation, crater formation, fluidization, and more intricate changes in the boiling regime when impacting superheated particles. In this study, we focus on droplet impact behavior on superheated laminar particles at various temperatures and define six typical characteristic patterns of a single droplet impact on superheated laminar particles, including film evaporation, bubbly boiling, immersion boiling, sputter boiling, transition boiling, and film boiling. It is worth noting that the variations of inertial force FI caused by gravity, the capillary force FC generated by the pores of the droplets, and the dewetting force by the vapor phase FV are the main contributors to different evaporation regimes. Interestingly, we find that the Leidenfrost point (LFP) of droplets on the laminar superheated particles decreases with particle size, which is related to the effect of the pore space generated between the laminar particles. Finally, the effect of temperature, particle size, and Weber number (We) on the dynamic behavior of droplet impact is revealed. Experimental results show that the instantaneous diameter of droplets is inversely proportional to the change of height, with different patterns of maximum spreading diameter and maximum bounce height at different particle sizes, while the maximum spreading velocity and maximum bounce velocity are independent of particle size. We believe the present work would provide a broader knowledge and comprehension of the droplet impact on heated particles and promote the development of the safety and productivity of industrial processes such as fluid catalytic cracking, spray drying, and spray cooling.

9.
Sensors (Basel) ; 23(10)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37430823

RESUMEN

A novel wearable upper arm tactile display device, which can simultaneously provide three types of tactile stimuli (i.e., squeezing, stretching, and vibration) is presented. The squeezing and stretching stimulation of the skin is generated by two motors simultaneously driving the nylon belt in the opposite and the same direction, respectively. In addition, four evenly spaced vibration motors are fixed around the user's arm by an elastic nylon band. There is also a unique structural design for assembling the control module and actuator, powered by two lithium batteries, making it portable and wearable. Psychophysical experiments are conducted to investigate the effect of interference on the perception of squeezing and stretching stimulation by this device. Results show that (1) different tactile stimuli actually interfere with the user's perception compared to the case where only one stimulus is applied to the user; (2) the squeezing has a considerable impact on the stretch just noticeable difference (JND) values when both stimuli are exerted on the user, and when the squeezing is strong, while the impact of stretch on the squeezing JND values is negligible.


Asunto(s)
Nylons , Dispositivos Electrónicos Vestibles , Piel , Suministros de Energía Eléctrica , Litio
10.
IEEE Trans Image Process ; 32: 4073-4087, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37436853

RESUMEN

Video-language pre-training has attracted considerable attention recently for its promising performance on various downstream tasks. Most existing methods utilize the modality-specific or modality-joint representation architectures for the cross-modality pre-training. Different from previous methods, this paper presents a novel architecture named Memory-augmented Inter-Modality Bridge (MemBridge), which uses the learnable intermediate modality representations as the bridge for the interaction between videos and language. Specifically, in the transformer-based cross-modality encoder, we introduce the learnable bridge tokens as the interaction approach, which means the video and language tokens can only perceive information from bridge tokens and themselves. Moreover, a memory bank is proposed to store abundant modality interaction information for adaptively generating bridge tokens according to different cases, enhancing the capacity and robustness of the inter-modality bridge. Through pre-training, MemBridge explicitly models the representations for more sufficient inter-modality interaction. Comprehensive experiments show that our approach achieves competitive performance with previous methods on various downstream tasks including video-text retrieval, video captioning, and video question answering on multiple datasets, demonstrating the effectiveness of the proposed method. The code has been available at https://github.com/jahhaoyang/MemBridge.

11.
Langmuir ; 39(28): 9648-9659, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37390023

RESUMEN

Regulation over the generation of the Leidenfrost phenomenon in liquids is vitally important in a cutting fluid/tool system, with benefits ranging from optimizing the heat transfer efficiency to improving the machining performance. However, realizing the influence mechanism of liquid boiling at various temperatures still faces enormous challenges. Herein, we report a kind of microgrooved tool surface by laser ablation, which could obviously increase both the static and dynamic Leidenfrost point of cutting fluid by adjusting the surface roughness (Sa). The physical mechanism that delays the Leidenfrost effect is primarily due to the ability of the designed microgroove surface to store and release vapor during droplet boiling so that the heated surface requires higher temperatures to generate sufficient vapor to suspend the droplet. We also find six typical impact regimes of cutting fluid under various contact temperatures; it is worth noting that Sa has a great influence on the transform threshold among six impact regimes, and the likelihood that a droplet will enter the Leidenfrost regime decreases with increasing Sa. In addition, the synergistic effect of Sa and tool temperature on the droplet kinetics of cutting droplets is investigated, and the relationship between the maximum rebound height and the dynamic Leidenfrost point is correlated for the first time. Significantly, cooling experiments on the heated microgrooved surface are performed and demonstrate that it is effective to improve the heat dissipation ability of cutting fluid by delaying the Leidenfrost effect on the microgrooved heated surface.

12.
BMC Plant Biol ; 23(1): 164, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977991

RESUMEN

BACKGROUND: Subtribe Swertiinae, a medicinally significant and highly speciose Subtribe of family Gentianaceae. Despite previous extensive studies based on both morphology and molecular data, intergeneric and infrageneric relationships within subtribe Swertiinae remain controversial. METHODS: Here, we employed four newly generated Swertia chloroplast genomes with thirty other published genomes to elucidate their genomic characteristics. RESULTS: The 34 chloroplast genomes were small and ranged in size from 149,036 to 154,365 bp, each comprising two inverted repeat regions (size range 25,069-26,126 bp) that separated large single-copy (80,432-84,153 bp) and small single-copy (17,887-18,47 bp) regions, and all the chloroplast genomes showed similar gene orders, contents, and structures. These chloroplast genomes contained 129-134 genes each, including 84-89 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes of subtribe Swertiinae appeared to have lost some genes, such as rpl33, rpl2 and ycf15 genes. Comparative analyses revealed that two mutation hotspot regions (accD-psaI and ycf1) could serve as effective molecular markers for further phylogenetic analyses and species identification in subtribe Swertiinae. Positive selection analyses showed that two genes (ccsA and psbB) had high Ka/Ks ratios, indicating that chloroplast genes may have undergone positive selection in their evolutionary history. Phylogenetic analysis showed that the 34 subtribe Swertiinae species formed a monophyletic clade, with Veratrilla, Gentianopsis and Pterygocalyx located at the base of the phylogenetic tree. Some genera of this subtribe, however, were not monophyletic, including Swertia, Gentianopsis, Lomatogonium, Halenia, Veratrilla and Gentianopsis. In addition, our molecular phylogeny was consistent with taxonomic classification of subtribe Swertiinae in the Roate group and Tubular group. The results of molecular dating showed that the divergence between subtrib Gentianinae and subtrib Swertiinae was estimated to occur in 33.68 Ma. Roate group and Tubular group in subtribe Swertiinae approximately diverged in 25.17 Ma. CONCLUSION: Overall, our study highlighted the taxonomic utility of chloroplast genomes in subtribe Swertiinae, and the genetic markers identified here will facilitate future studies on the evolution, conservation, population genetics, and phylogeography of subtribe Swertiinae species.


Asunto(s)
Genoma del Cloroplasto , Gentianaceae , Filogenia , Gentianaceae/genética , Genómica/métodos , Cloroplastos/genética , Filogeografía , Genoma del Cloroplasto/genética
13.
Am J Transl Res ; 15(2): 982-994, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36915794

RESUMEN

OBJECTIVES: Ovarian cancer (OC) ranks fifth among the main causes of cancer-related deaths in women worldwide. PCLAF/KIAA0101 and Yes-associated protein (YAP) have been linked to several human malignant cancers, including OC. However, the roles of KIAA0101 and YAP in glycolysis-dependent OC cell proliferation remain unknown. METHODS: qRT-PCR and western blot were performed to analyze the KIAA0101 expression. Short hairpin RNA transfection was performed to silence KIAA0101 expression in cells. Cell viability and apoptosis were assayed by colony formation and flow cytometry, respectively. Glucose uptake, lactate production, and glycolytic enzyme expression were assessed to determine the level of cellular glycolysis. Phosphorylation and the nuclear localization of YAP were assessed to determine YAP activation. RESULTS: OC tissue and cell lines exhibited higher KIAA0101 expression than the non-cancerous tissues and cells. KIAA0101 silencing reduced the proliferation and increased the apoptosis of both A2780 and ES-2 OC cell lines. Furthermore, KIAA0101 depletion suppressed glycolysis and YAP activation, as evidenced by increased YAP phosphorylation and decreased nuclear localization. Reactivation of YAP was performed by administration of mitochonic acid 5 in both OC cell lines with KIAA0101 knockdown. Glucose uptake, lactate production, phosphofructokinase, pyruvate dehydrogenase beta, pyruvate kinase M2, triosephosphate isomerase 1, glucose-6-phosphate dehydrogenase, enolase 1, and lactate dehydrogenase expression levels in cells recovered after the reactivation of YAP. Additionally, YAP reactivation increased cell proliferation and inhibited apoptosis. CONCLUSIONS: This study showed that KIAA0101 could promote glycolysis during nasopharyngeal carcinoma development through YAP signaling activation, suggesting that KIAA0101 could serve as a target for OC treatment.

15.
Front Pharmacol ; 14: 1339518, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269286

RESUMEN

pH-sensitive fluorescent proteins have revolutionized the field of cellular imaging and physiology, offering insight into the dynamic pH changes that underlie fundamental cellular processes. This comprehensive review explores the diverse applications and recent advances in the use of pH-sensitive fluorescent proteins. These remarkable tools enable researchers to visualize and monitor pH variations within subcellular compartments, especially mitochondria, shedding light on organelle-specific pH regulation. They play pivotal roles in visualizing exocytosis and endocytosis events in synaptic transmission, monitoring cell death and apoptosis, and understanding drug effects and disease progression. Recent advancements have led to improved photostability, pH specificity, and subcellular targeting, enhancing their utility. Techniques for multiplexed imaging, three-dimensional visualization, and super-resolution microscopy are expanding the horizon of pH-sensitive protein applications. The future holds promise for their integration into optogenetics and drug discovery. With their ever-evolving capabilities, pH-sensitive fluorescent proteins remain indispensable tools for unravelling cellular dynamics and driving breakthroughs in biological research. This review serves as a comprehensive resource for researchers seeking to harness the potential of pH-sensitive fluorescent proteins.

16.
Food Res Int ; 159: 111673, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35940776

RESUMEN

Pre-salting is an important pre-treatment during production of Suancai as it provides flavor precursor and microbial community for subsequent fermentation. To investigate the effect of pre-salting duration on fermentation of Suancai, the physicochemical properties, microbial composition, non-volatile and volatile organic compounds profiles of Suancai pre-salted for 1 month (1 M) and 7 months (7 M) were analyzed during fermentation for 30 days. Results showed that 7 M led to higher salt content, faster depletion of reducing sugars, and more titratable acidity. Additionally, more lactic acid and acetic acid, and less umami amino acid (Glu) and GABA were observed in 7 M. Longer pre-salting duration (7 M) promoted formation of mild-flavor volatile compounds, and significantly reduced isothiocyanates with pungent off-flavor. Moreover, 7 M promoted abundance of genera Chromohalobacter, Vibrio and Pichia, while reducing abundance of Lactobacillus, Debaryomyces and Kazachstania throughout fermentation. These results implicated that longer pre-salting duration facilitated more acidic, milder flavor and less pungent off-odor in Suancai. This study provided a perspective for pre-salting as a control point for improving quality of fermented vegetable.


Asunto(s)
Alimentos Fermentados , Compuestos Orgánicos Volátiles , China , Fermentación , Cloruro de Sodio , Verduras/metabolismo , Compuestos Orgánicos Volátiles/análisis
17.
Metabolites ; 12(5)2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35629931

RESUMEN

Vinegar is used as an acidic condiment and preservative worldwide. In Asia, various black vinegars are made from different combinations of grains, such as Sichuan bran vinegar (SBV), Shanxi aged vinegar (SAV), Zhenjiang aromatic vinegar (ZAV), and Fujian Monascus vinegar (FMV) in China and Ehime black vinegar in Japan (JBV). Understanding the chemical compositions of different vinegars can provide information about nutritional values and the quality of the taste. This study investigated the vinegar metabolome using a combination of GC-MS, conventional LC-MS, and chemical isotope labeling LC-MS. Different types of vinegar contained different metabolites and concentrations. Amino acids and organic acids were found to be the main components. Tetrahydroharman-3-carboxylic acid and harmalan were identified first in vinegar. Various diketopiperazines and linear dipeptides contributing to different taste effects were also detected first in vinegar. Dipeptides, 3-phenyllactic acid, and tyrosine were found to be potential metabolic markers for differentiating vinegars. The differently expressed pathway between Chinese and Japanese vinegar was tryptophan metabolism, while the main difference within Chinese vinegars was aminoacyl-tRNA biosynthesis metabolism. These results not only give insights into the metabolites in famous types of cereal vinegar but also provide valuable knowledge for making vinegar with desirable health characteristics.

18.
ACS Omega ; 6(38): 24484-24492, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34604630

RESUMEN

Macamides are characteristically found in maca (Lepidium meyenii Walper). Fatty acid derivatives are also an important type of constituent in maca, since they not only relate to the biosynthesis of macamides in the postharvest process but also possess some bioactivities. To study their comprehensive profiles in maca tubers processed via the air-drying method, ultraperformance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) analyses were performed to identify macamide and fatty acid molecules. Their contents in maca tubers that were processed via air drying and freeze drying, respectively, were further quantified using high-performance liquid chromatography (HPLC) analyses comparing with eight macamide and three fatty acid reference standards. A total of 19 macamides (including four novel ones) and 16 fatty acid derivatives (two found in maca for the first time) were identified. Quantification analyses results showed the eight macamides with contents ranging from 31.39 to 1163.19 µg/g (on dry tuber), and fatty acids from 18.71 to 181.99 µg/g in the air-dried maca, but there were only three macamides and one fatty acid detected with very low contents (3.97-34.36 µg/g) in the freeze-dried maca. The results demonstrated that the air-drying method can increase the accumulations of macamides and fatty acids in the metabolism of maca in the postharvest process. The biosynthesis of two types of macamides, i.e., N-benzyl-oxo-octadecadienamides and N-benzyl-oxo-octadecatrienamides, was further elucidated in detail. These results provide more valuable insights into the phytochemicals of maca, which is helpful to explain its health benefits.

19.
Biology (Basel) ; 10(9)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34571705

RESUMEN

Agricultural weeds pose great challenges to sustainable crop production, owing to their complex origins and abundant genetic diversity. Weedy rice (WD) infests rice fields worldwide causing tremendous losses of rice yield/quality. To explore WD origins and evolution, we analyzed DNA sequence polymorphisms of the seed shattering genes (sh4 and qsh1) in weedy, wild, and cultivated rice from a worldwide distribution. We also used microsatellite and insertion/deletion molecular fingerprinting to determine their genetic relationship and structure. Results indicate multiple origins of WD with most samples having evolved from their cultivated progenitors and a few samples from wild rice. WD that evolved from de-domestication showed distinct genetic structures associated with indica and japonica rice differentiation. In addition, the weed-unique haplotypes that were only identified in the WD samples suggest their novel mutations. Findings in this study demonstrate the key role of de-domestication in WD origins, in which indica and japonica cultivars stimulated further evolution and divergence of WD in various agroecosystems. Furthermore, novel mutations promote continued evolution and genetic diversity of WD adapting to different environments. Knowledge generated from this study provides deep insights into the origin and evolution of conspecific weeds, in addition to the design of effective measures to control these weeds.

20.
Food Chem ; 365: 130489, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34243120

RESUMEN

The present study aimed to investigate the effect of initial vacuum package (VP), air package (AP) and salt-solution package (NP) on texture softening and package-swelling of Paocai by comparing the changes in physicochemical properties, pectinolysis, microstructure, microbial profile, as well as sugar and organic acid profiles during storage. Results showed that, when compared with AP and NP, with suppressive microbial invasion and less total pectinase activity, VP could retain more soluble pectin and induce more compact microstructure of Paocai, leading to higher hardness of Paocai during storage. As for package-swelling, VP mitigated gas-production in package by changing the microbial composition and metabolic patterns of sugar and organic acid in Paocai, especially targeted regulating the abundance of genus Kazachstania. This study provided a perspective for appropriate packaging technology to control the pectinase activity as well as cell-invading and gas-producing microorganisms for manufacturing fermented vegetable with better texture and non-package-swelling.


Asunto(s)
Ácidos , Azúcares , Pared Celular , Fermentación , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...