Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Magn Reson Imaging ; 59(4): 1425-1435, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37403945

RESUMEN

BACKGROUND: Dynamic contrast-enhanced (DCE) MRI commonly outperforms diffusion-weighted (DW) MRI in breast cancer discrimination. However, the side effects of contrast agents limit the use of DCE-MRI, particularly in patients with chronic kidney disease. PURPOSE: To develop a novel deep learning model to fully exploit the potential of overall b-value DW-MRI without the need for a contrast agent in predicting breast cancer molecular subtypes and to evaluate its performance in comparison with DCE-MRI. STUDY TYPE: Prospective. SUBJECTS: 486 female breast cancer patients (training/validation/test: 64%/16%/20%). FIELD STRENGTH/SEQUENCE: 3.0 T/DW-MRI (13 b-values) and DCE-MRI (one precontrast and five postcontrast phases). ASSESSMENT: The breast cancers were divided into four subtypes: luminal A, luminal B, HER2+, and triple negative. A channel-dimensional feature-reconstructed (CDFR) deep neural network (DNN) was proposed to predict these subtypes using pathological diagnosis as the reference standard. Additionally, a non-CDFR DNN (NCDFR-DNN) was built for comparative purposes. A mixture ensemble DNN (ME-DNN) integrating two CDFR-DNNs was constructed to identify subtypes on multiparametric MRI (MP-MRI) combing DW-MRI and DCE-MRI. STATISTICAL TESTS: Model performance was evaluated using accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Model comparisons were performed using the one-way analysis of variance with least significant difference post hoc test and the DeLong test. P < 0.05 was considered significant. RESULTS: The CDFR-DNN (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.94) demonstrated significantly improved predictive performance than the NCDFR-DNN (accuracies, 0.76 ~ 0.78; AUCs, 0.92 ~ 0.93) on DW-MRI. Utilizing the CDFR-DNN, DW-MRI attained the predictive performance equal (P = 0.065 ~ 1.000) to DCE-MRI (accuracies, 0.79 ~ 0.80; AUCs, 0.93 ~ 0.95). The predictive performance of the ME-DNN on MP-MRI (accuracies, 0.85 ~ 0.87; AUCs, 0.96 ~ 0.97) was superior to those of both the CDFR-DNN and NCDFR-DNN on either DW-MRI or DCE-MRI. DATA CONCLUSION: The CDFR-DNN enabled overall b-value DW-MRI to achieve the predictive performance comparable to DCE-MRI. MP-MRI outperformed DW-MRI and DCE-MRI in subtype prediction. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 1.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Humanos , Femenino , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias de la Mama/patología , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Medios de Contraste , Estudios Retrospectivos
2.
Comput Biol Med ; 166: 107493, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37774558

RESUMEN

Accurately predicting the isocitrate dehydrogenase (IDH) mutation status of gliomas is greatly significant for formulating appropriate treatment plans and evaluating the prognoses of gliomas. Although existing studies can accurately predict the IDH mutation status of gliomas based on multimodal magnetic resonance (MR) images and machine learning methods, most of these methods cannot fully explore multimodal information and effectively predict IDH status for datasets acquired from multiple centers. To address this issue, a novel wavelet scattering (WS)-based orthogonal fusion network (WSOFNet) was proposed in this work to predict the IDH mutation status of gliomas from multiple centers. First, transformation-invariant features were extracted from multimodal MR images with a WS network, and then the multimodal WS features were used instead of the original images as the inputs of WSOFNet and were fully fused through an adaptive multimodal feature fusion module (AMF2M) and an orthogonal projection module (OPM). Finally, the fused features were input into a fully connected classifier to predict IDH mutation status. In addition, to achieve improved prediction accuracy, four auxiliary losses were also used in the feature extraction modules. The comparison results showed that the prediction area under the curve (AUC) of WSOFNet on a single-center dataset was 0.9966 and that on a multicenter dataset was approximately 0.9655, which was at least 3.9% higher than that of state-of-the-art methods. Moreover, the ablation experimental results also proved that the adaptive multimodal feature fusion strategy based on orthogonal projection could effectively improve the prediction performance of the model, especially for an external validation dataset.

3.
Comput Med Imaging Graph ; 108: 102281, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37579555

RESUMEN

Deformable medical image registration is an essential preprocess step for several clinical applications. Even though the existing convolutional neural network and transformer based methods achieved the promising results, the limited long-range spatial dependence and non-uniform attention span of these models prohibit further improving the registration performance. To deal with this issue, we proposed a multi-dilation spherical graph transformer (MD-SGT), in which the encoder combined the advantages of convolutional and graph transformer blocks to distinguish effectively the differences between the reference and the template images at various scales. Specifically, the features of each voxel were obtained by aggregating the information from its neighbors sampled from different spherical regions with different dilation rates. The implicit convolution inductive bias and long-range uniform attention span induced by such information aggregation manner made the features more representative for registration. Through the qualitative and quantitative comparisons with state-of-the-art methods on two datasets, we demonstrated that combining long-range uniform attention span and inductive bias are beneficial for promoting the image registration performance, with the Dice score, ASD and HD95 being improved at least by 0.5%, 2.2% and 1.1%, respectively.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Dilatación
4.
J Magn Reson Imaging ; 58(5): 1590-1602, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36661350

RESUMEN

BACKGROUND: Dynamic contrast-enhanced (DCE) MRI and non-mono-exponential model-based diffusion-weighted imaging (NME-DWI) that does not require contrast agent can both characterize breast cancer. However, which technique is superior remains unclear. PURPOSE: To compare the performances of DCE-MRI, NME-DWI and their combination as multiparametric MRI (MP-MRI) in the prediction of breast cancer prognostic biomarkers and molecular subtypes based on radiomics. STUDY TYPE: Prospective. POPULATION: A total of 477 female patients with 483 breast cancers (5-fold cross-validation: training/validation, 80%/20%). FIELD STRENGTH/SEQUENCE: A 3.0 T/DCE-MRI (6 dynamic frames) and NME-DWI (13 b values). ASSESSMENT: After data preprocessing, high-throughput features were extracted from each tumor volume of interest, and optimal features were selected using recursive feature elimination method. To identify ER+ vs. ER-, PR+ vs. PR-, HER2+ vs. HER2-, Ki-67+ vs. Ki-67-, luminal A/B vs. nonluminal A/B, and triple negative (TN) vs. non-TN, the following models were implemented: random forest, adaptive boosting, support vector machine, linear discriminant analysis, and logistic regression. STATISTICAL TESTS: Student's t, chi-square, and Fisher's exact tests were applied on clinical characteristics to confirm whether significant differences exist between different statuses (±) of prognostic biomarkers or molecular subtypes. The model performances were compared between the DCE-MRI, NME-DWI, and MP-MRI datasets using the area under the receiver-operating characteristic curve (AUC) and the DeLong test. P < 0.05 was considered significant. RESULTS: With few exceptions, no significant differences (P = 0.062-0.984) were observed in the AUCs of models for six classification tasks between the DCE-MRI (AUC = 0.62-0.87) and NME-DWI (AUC = 0.62-0.91) datasets, while the model performances on the two imaging datasets were significantly poorer than on the MP-MRI dataset (AUC = 0.68-0.93). Additionally, the random forest and adaptive boosting models (AUC = 0.62-0.93) outperformed other three models (AUC = 0.62-0.90). DATA CONCLUSION: NME-DWI was comparable with DCE-MRI in predictive performance and could be used as an alternative technique. Besides, MP-MRI demonstrated significantly higher AUCs than either DCE-MRI or NME-DWI. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 2.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Estudios Prospectivos , Antígeno Ki-67 , Pronóstico , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos
5.
World J Gastroenterol ; 28(24): 2733-2747, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35979164

RESUMEN

BACKGROUND: The prognosis of hepatocellular carcinoma (HCC) remains poor and relapse occurs in more than half of patients within 2 years after hepatectomy. In terms of recent studies, microvascular invasion (MVI) is one of the potential predictors of recurrence. Accurate preoperative prediction of MVI is potentially beneficial to the optimization of treatment planning. AIM: To develop a radiomic analysis model based on pre-operative magnetic resonance imaging (MRI) data to predict MVI in HCC. METHODS: A total of 113 patients recruited to this study have been diagnosed as having HCC with histological confirmation, among whom 73 were found to have MVI and 40 were not. All the patients received preoperative examination by Gd-enhanced MRI and then curative hepatectomy. We manually delineated the tumor lesion on the largest cross-sectional area of the tumor and the adjacent two images on MRI, namely, the regions of interest. Quantitative analyses included most discriminant factors (MDFs) developed using linear discriminant analysis algorithm and histogram analysis with MaZda software. Independent significant variables of clinical and radiological features and MDFs for the prediction of MVI were estimated and a discriminant model was established by univariate and multivariate logistic regression analysis. Prediction ability of the above-mentioned parameters or model was then evaluated by receiver operating characteristic (ROC) curve analysis. Five-fold cross-validation was also applied via R software. RESULTS: The area under the ROC curve (AUC) of the MDF (0.77-0.85) outperformed that of histogram parameters (0.51-0.74). After multivariate analysis, MDF values of the arterial and portal venous phase, and peritumoral hypointensity in the hepatobiliary phase were identified to be independent predictors of MVI (P < 0.05). The AUC value of the model was 0.939 [95% confidence interval (CI): 0.893-0.984, standard error: 0.023]. The result of internal five-fold cross-validation (AUC: 0.912, 95%CI: 0.841-0.959, standard error: 0.0298) also showed favorable predictive efficacy. CONCLUSION: Noninvasive MRI radiomic model based on MDF values and imaging biomarkers may be useful to make preoperative prediction of MVI in patients with primary HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/cirugía , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Imagen por Resonancia Magnética/métodos , Microvasos/diagnóstico por imagen , Microvasos/patología , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia/patología , Estudios Retrospectivos
6.
Med Image Anal ; 77: 102325, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35158290

RESUMEN

To investigate the relationship between microscopic myocardial structures and macroscopic measurements of diffusion tensor imaging (DTI), we proposed a cardiac DTI simulation method using the Bloch equation and the Monte Carlo random walk in a realistic myocardium model reconstructed from polarized light imaging (PLI) data of the entire human heart. To obtain a realistic simulation, with the constraints of prior knowledge pertaining to the maturational change of the myocardium structure, appropriate microstructure modeling parameters were iteratively determined by matching DTI simulations and real acquisitions of the same hearts in terms of helix angle, fractional anisotropy (FA) and mean diffusivity (MD) maps. Once a realistic simulation was obtained, we varied the extra-cellular volume (ECV) ratio, myocyte orientation heterogeneity and myocyte size, and explored the effects of microscopic changes in tissue structure on macroscopic diffusion metrics. The experimental results demonstrated the feasibility of simulating the DTI of the whole heart using PLI measurements. When varying ECV from 15% to 55%, mean FA decreased from 0.55 to 0.26, axial diffusivity increased by 0.6 µm2/ms, and radial diffusivity increased by 0.7 µm2/ms. When orientation heterogeneity was varied from 0 to 20∘, mean FA decreased from 0.4 to 0.3, axial diffusivity decreased by 0.08 µm2/ms, and radial diffusivity increased by 0.03 µm2/ms. When mean diameter of myocytes was varied from 6 µm to 10 µm, FA decreased from 0.67 to 0.46, axial and radial diffusivities increased by 0.05 and 0.2 µm2/ms, respectively.


Asunto(s)
Benchmarking , Imagen de Difusión Tensora , Anisotropía , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Humanos , Miocardio
7.
J Magn Reson Imaging ; 56(3): 848-859, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35064945

RESUMEN

BACKGROUND: Dynamic-exponential intravoxel incoherent motion (IVIM) imaging is a potential technique for prediction, monitoring, and differential diagnosis of hepatic diseases, especially liver tumors. However, the use of such technique at voxel level is still limited. PURPOSE: To develop an unsupervised deep learning approach for voxel-wise dynamic-exponential IVIM modeling and parameter estimation in the liver. STUDY TYPE: Prospective. POPULATION: Ten healthy subjects (4 males; age 28 ± 6 years). FIELD STRENGTH/SEQUENCE: Single-shot spin-echo echo planar imaging (SE-EPI) sequence with monopolar diffusion-encoding gradients (12 b-values, 0-800 seconds/mm2 ) at 3.0 T. ASSESSMENT: The proposed deep neural network (DNN) was separately trained on simulated and in vivo hepatic IVIM datasets. The trained networks were compared to the approach combining least squares with Akaike information criterion (LSQ-AIC) in terms of dynamic-exponential modeling accuracy, inter-subject coefficients of variation (CVs), and fitting residuals on the simulated subsets and regions of interest (ROIs) in the left and right liver lobes. The ROIs were delineated by a radiologist (H.-X.Z.) with 7 years of experience in MRI reading. STATISTICAL TESTS: Comparisons between approaches were performed with a paired t-test (normality) or a Wilcoxon rank-sum test (nonnormality). P < 0.05 was considered statistically significant. RESULTS: In simulations, DNN gave significantly higher accuracy (91.6%-95.5%) for identification of bi-exponential decays with respect to LSQ-AIC (79.7%-86.8%). For tri-exponential identification, DNN was also superior to LSQ-AIC despite not reaching a significant level (P = 0.08). Additionally, DNN always yielded comparatively low root-mean-square error for estimated parameters. For the in vivo IVIM measurements, inter-subject CVs (0.011-0.150) of DNN were significantly smaller than those (0.049-0.573) of LSQ-AIC. Concerning fitting residuals, there was no significant difference between the two approaches (P = 0.56 and 0.76) in both the simulated and in vivo studies. DATA CONCLUSION: The proposed DNN is recommended for accurate and robust dynamic-exponential modeling and parameter estimation in hepatic IVIM imaging. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Aprendizaje Profundo , Imagen de Difusión por Resonancia Magnética , Adulto , Imagen de Difusión por Resonancia Magnética/métodos , Humanos , Hígado/diagnóstico por imagen , Masculino , Movimiento (Física) , Estudios Prospectivos , Reproducibilidad de los Resultados , Adulto Joven
8.
J Magn Reson Imaging ; 55(3): 854-865, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34296813

RESUMEN

BACKGROUND: Intravoxel incoherent motion (IVIM) tensor imaging is a promising technique for diagnosis and monitoring of cardiovascular diseases. Knowledge about measurement repeatability, however, remains limited. PURPOSE: To evaluate short-term repeatability of IVIM tensor imaging in normal in vivo human hearts. STUDY TYPE: Prospective. POPULATION: Ten healthy subjects without history of heart diseases. FIELD STRENGTH/SEQUENCE: Balanced steady-state free-precession cine sequence and single-shot spin-echo echo planar IVIM tensor imaging sequence (9 b-values, 0-400 seconds/mm2 and six diffusion-encoding directions) at 3.0 T. ASSESSMENT: Subjects were scanned twice with an interval of 15 minutes, leaving the scanner between studies. The signal-to-noise ratio (SNR) was evaluated in anterior, lateral, septal, and inferior segments of the left ventricle wall. Fractional anisotropy (FA), mean diffusivity (MD), mean fraction (MF), and helix angle (HA) in the four segments were independently measured by five radiologists. STATISTICAL TESTS: IVIM tensor indexes were compared between observers using a one-way analysis of variance or between scans using a paired t-test (normal data) or a Wilcoxon rank-sum test (non-normal data). Interobserver agreement and test-retest repeatability were assessed using the intraclass correlation coefficient (ICC), within-subject coefficient of variation (WCV), and Bland-Altman limits of agreements. RESULTS: SNR of inferior segment was significantly lower than the other three segments, and inferior segment was therefore excluded from repeatability analysis. Interobserver repeatability was excellent for all IVIM tensor indexes (ICC: 0.886-0.972; WCV: 0.62%-4.22%). Test-retest repeatability was excellent for MD of the self-diffusion tensor (D) and MF of the perfusion fraction tensor (fp ) (ICC: 0.803-0.888; WCV: 1.42%-9.51%) and moderate for FA and MD of the pseudo-diffusion tensor (D* ) (ICC: 0.487-0.532; WCV: 6.98%-10.89%). FA of D and fp and HA of D presented good test-retest repeatability (ICC: 0.732-0.788; WCV: 3.28%-8.71%). DATA CONCLUSION: The D and fp indexes exhibited satisfactory repeatability, but further efforts were needed to improve repeatability of D* indexes. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen Eco-Planar , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Voluntarios Sanos , Humanos , Movimiento (Física) , Estudios Prospectivos , Reproducibilidad de los Resultados
9.
IEEE Trans Med Imaging ; 40(6): 1603-1617, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33635786

RESUMEN

Training convolutional neural networks (CNNs) for segmentation of pulmonary airway, artery, and vein is challenging due to sparse supervisory signals caused by the severe class imbalance between tubular targets and background. We present a CNNs-based method for accurate airway and artery-vein segmentation in non-contrast computed tomography. It enjoys superior sensitivity to tenuous peripheral bronchioles, arterioles, and venules. The method first uses a feature recalibration module to make the best use of features learned from the neural networks. Spatial information of features is properly integrated to retain relative priority of activated regions, which benefits the subsequent channel-wise recalibration. Then, attention distillation module is introduced to reinforce representation learning of tubular objects. Fine-grained details in high-resolution attention maps are passing down from one layer to its previous layer recursively to enrich context. Anatomy prior of lung context map and distance transform map is designed and incorporated for better artery-vein differentiation capacity. Extensive experiments demonstrated considerable performance gains brought by these components. Compared with state-of-the-art methods, our method extracted much more branches while maintaining competitive overall segmentation performance. Codes and models are available at http://www.pami.sjtu.edu.cn/News/56.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Redes Neurales de la Computación , Arterias , Pulmón/diagnóstico por imagen , Tomografía Computarizada por Rayos X
10.
Magn Reson Med ; 85(3): 1414-1426, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32989786

RESUMEN

PURPOSE: To investigate intravoxel incoherent motion (IVIM) tensor imaging of the in vivo human heart and elucidate whether the estimation of IVIM tensors is affected by the complexity of pseudo-diffusion components in myocardium. METHODS: The cardiac IVIM data of 10 healthy subjects were acquired using a diffusion weighted spin-echo echo-planar imaging sequence along 6 gradient directions with 10 b values (0~400 s/mm2 ). The IVIM data of left ventricle myocardium were fitted to the IVIM tensor model. The complexity of myocardial pseudo-diffusion components was reduced through exclusion of low b values (0 and 5 s/mm2 ) from the IVIM curve-fitting analysis. The fractional anisotropy, mean fraction/mean diffusivity, and Westin measurements of pseudo-diffusion tensors (fp and D*) and self-diffusion tensor (D), as well as the angle between the main eigenvector of fp (or D*) and that of D, were computed and compared before and after excluding low b values. RESULTS: The fractional anisotropy values of fp and D* without low b value participation were significantly higher (P < .001) than those with low b value participation, but an opposite trend was found for the mean fraction/diffusivity values. Besides, after removing low b values, the angle between the main eigenvector of fp (or D*) and that of D became small, and both fp and D* tensors presented significant decrease of spherical components and significant increase of linear components. CONCLUSION: The presence of multiple pseudo-diffusion components in myocardium indeed influences the estimation of IVIM tensors. The IVIM tensor model needs to be further improved to account for the complexity of myocardial microcirculatory network and blood flow.


Asunto(s)
Pruebas Diagnósticas de Rutina , Corazón , Imagen de Difusión por Resonancia Magnética , Corazón/diagnóstico por imagen , Humanos , Microcirculación , Movimiento (Física) , Miocardio
11.
Cancer Imaging ; 19(1): 39, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217036

RESUMEN

BACKGROUND: Preoperative chemotherapy is becoming standard therapy for liver metastasis from colorectal cancer, so early assessment of treatment response is crucial to make a reasonable therapeutic regimen and avoid overtreatment, especially for patients with severe side effects. The role of three non-mono-exponential diffusion models, such as the kurtosis model, the stretched exponential model and the statistical model, were explored in this study to early assess the response to chemotherapy in patients with liver metastasis from colorectal cancer. METHODS: Thirty-three patients diagnosed as colorectal liver metastasis were evaluated in this study. Diffusion-weighted images with b values (0, 200, 500, 1000, 1500, 2000 s/mm2) were acquired at 3.0 T. The parameters (ADCk, K, DDC,α, Ds and σ) were derived from three non-mono-exponential models (the kurtosis, stretched exponential and statistical models) as well as their corresponding percentage changes before and after chemotherapy. The difference in above parameters between the response and non-response groups were analyzed with independent-samples T-test (normality) and Mann-Whitney U-test (non-normality). Meanwhile, receiver operating characteristic curve (ROC) analyses were performed to assess the response to chemotherapy. RESULTS: Significantly lower values of K (the kurtosis coefficient derived from the kurtosis model) and σ (the width of diffusion coefficient distribution in the statistical model) (P < 0.05) were observed in the respond group before treatment, as well as higher ΔK and Δσ values (P < 0.05) after the first cycle of chemotherapy were also found compared with the non-respond group. ROC analyses showed the K value acquired before treatment had the highest diagnostic performance (0.746) in distinguishing responders from non-responders. Furthermore, the high sensitivity (100%) and accuracy (76.3%) from the K value before treatment was found in assessing the response of colorectal liver metastasis to chemotherapy. CONCLUSIONS: The non-mono-exponential diffusion models may be able to predict early response to chemotherapy in patients with colorectal liver metastasis.


Asunto(s)
Neoplasias Colorrectales/tratamiento farmacológico , Imagen de Difusión por Resonancia Magnética/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Anciano , Neoplasias Colorrectales/diagnóstico por imagen , Neoplasias Colorrectales/patología , Femenino , Humanos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/secundario , Masculino , Persona de Mediana Edad , Análisis de Supervivencia
12.
IEEE Trans Biomed Eng ; 66(11): 3220-3230, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30843792

RESUMEN

OBJECTIVE: The purpose of this paper is to increase the accuracy of human cardiac diffusion tensor (DT) estimation in diffusion magnetic resonance imaging (dMRI) with a few diffusion gradient directions. METHODS: A structure prior constrained (SPC) method is proposed. The method consists in introducing two regularizers in the conventional nonlinear least squares estimator. The two regularizers penalize the dissimilarity between neighboring DTs and the difference between estimated and prior fiber orientations, respectively. A novel numerical solution is presented to ensure the positive definite estimation. RESULTS: Experiments on ex vivo human cardiac data show that the SPC method is able to well estimate DTs at most voxels, and is superior to state-of-the-art methods in terms of the mean errors of principal eigenvector, second eigenvector, helix angle, transverse angle, fractional anisotropy, and mean diffusivity. CONCLUSION: The SPC method is a practical and reliable alternative to current denoising- or regularization-based methods for the estimation of human cardiac DT. SIGNIFICANCE: The SPC method is able to accurately estimate human cardiac DTs in dMRI with a few diffusion gradient directions.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Imagen de Difusión Tensora/métodos , Corazón/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Anisotropía , Simulación por Computador , Humanos
13.
IEEE Trans Med Imaging ; 38(11): 2569-2581, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30908259

RESUMEN

Chromosome classification is critical for karyotyping in abnormality diagnosis. To expedite the diagnosis, we present a novel method named Varifocal-Net for simultaneous classification of chromosome's type and polarity using deep convolutional networks. The approach consists of one global-scale network (G-Net) and one local-scale network (L-Net). It follows three stages. The first stage is to learn both global and local features. We extract global features and detect finer local regions via the G-Net. By proposing a varifocal mechanism, we zoom into local parts and extract local features via the L-Net. Residual learning and multi-task learning strategies are utilized to promote high-level feature extraction. The detection of discriminative local parts is fulfilled by a localization subnet of the G-Net, whose training process involves both supervised and weakly supervised learning. The second stage is to build two multi-layer perceptron classifiers that exploit features of both two scales to boost classification performance. The third stage is to introduce a dispatch strategy of assigning each chromosome to a type within each patient case, by utilizing the domain knowledge of karyotyping. The evaluation results from 1909 karyotyping cases showed that the proposed Varifocal-Net achieved the highest accuracy per patient case (%) of 99.2 for both type and polarity tasks. It outperformed state-of-the-art methods, demonstrating the effectiveness of our varifocal mechanism, multi-scale feature ensemble, and dispatch strategy. The proposed method has been applied to assist practical karyotype diagnosis.


Asunto(s)
Cromosomas/ultraestructura , Interpretación de Imagen Asistida por Computador/métodos , Cariotipificación/métodos , Redes Neurales de la Computación , Algoritmos , Trastornos de los Cromosomas/diagnóstico por imagen , Femenino , Humanos , Masculino , Aprendizaje Automático Supervisado
14.
J Magn Reson Imaging ; 50(1): 297-304, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30447032

RESUMEN

BACKGROUND: Non-monoexponential diffusion models are being used increasingly for the characterization and curative effect evaluation of hepatocellular carcinoma (HCC). But the fitting quality of the models and the repeatability of their parameters have not been assessed for HCC. PURPOSE: To evaluate kurtosis, stretched exponential, and statistical models for diffusion-weighted imaging (DWI) of HCC, using b-values up to 2000 s/mm2 , in terms of fitting quality and repeatability. STUDY TYPE: Prospective. POPULATION: Eighteen patients with HCC. FIELD STRENGTH/SEQUENCE: Conventional and DW images (b = 0, 200, 500, 1000, 1500, 2000 s/mm2 ) were acquired at 3.0T. ASSESSMENT: The parameters of the kurtosis, stretched exponential, and statistical models were calculated on regions of interest (ROIs) of each lesion. STATISTICAL TESTS: The fitting quality was evaluated through comparing the fitting residuals produced on the average data of ROI between different models using a paired t-test or Wilcoxon rank-sum test. Repeatability of the fitted parameters at the median values on the voxelwise data of ROI was assessed using the within coefficient of variation (WCV), the intraclass correlation coefficient (ICC), and the 95% Bland-Altman limits of agreements (BA-LA). The repeatability was divided into four levels: excellent, good, acceptable, and poor, referring to the values of ICC and WCV. RESULTS: Among three models, the stretched exponential model provided the best fit to HCC (P < 0.05), whereas the statistical model produced the largest fitting residuals (P < 0.05). The repeatability of K from the kurtosis model was excellent (ICC 0.915; WCV 8.79%), while the distributed diffusion coefficient (DDC) from the stretched model was just acceptable (ICC 0.477; WCV 27.83%). The repeatability was good for other diffusion-related parameters. DATA CONCLUSION: Considering the model fit and repeatability, the kurtosis and stretched exponential models are the preferred models for the description of the DW signals of HCC with respect to the statistical model. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:297-304.


Asunto(s)
Carcinoma Hepatocelular/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética , Neoplasias Hepáticas/diagnóstico por imagen , Adulto , Anciano , Algoritmos , Femenino , Humanos , Interpretación de Imagen Asistida por Computador , Procesamiento de Imagen Asistido por Computador , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Estudios Prospectivos , Reproducibilidad de los Resultados , Relación Señal-Ruido
15.
Med Phys ; 46(3): 1218-1229, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30575046

RESUMEN

PURPOSE: Segmentation of pulmonary nodules is critical for the analysis of nodules and lung cancer diagnosis. We present a novel framework of segmentation for various types of nodules using convolutional neural networks (CNNs). METHODS: The proposed framework is composed of two major parts. The first part is to increase the variety of samples and build a more balanced dataset. A conditional generative adversarial network (cGAN) is employed to produce synthetic CT images. Semantic labels are generated to impart spatial contextual knowledge to the network. Nine attribute scoring labels are combined as well to preserve nodule features. To refine the realism of synthesized samples, reconstruction error loss is introduced into cGAN. The second part is to train a nodule segmentation network on the extended dataset. We build a three-dimensional (3D) CNN model that exploits heterogeneous maps including edge maps and local binary pattern maps. The incorporation of these maps informs the model of texture patterns and boundary information of nodules, which assists high-level feature learning for segmentation. Residual unit, which learns to reduce residual error, is adopted to accelerate training and improve accuracy. RESULTS: Validation on LIDC-IDRI dataset demonstrates that the generated samples are realistic. The mean squared error and average cosine similarity between real and synthesized samples are 1.55 × 10 - 2 and 0.9534, respectively. The Dice coefficient, positive predicted value, sensitivity, and accuracy are, respectively, 0.8483, 0.8895, 0.8511, and 0.9904 for the segmentation results. CONCLUSIONS: The proposed 3D CNN segmentation framework, based on the use of synthesized samples and multiple maps with residual learning, achieves more accurate nodule segmentation compared to existing state-of-the-art methods. The proposed CT image synthesis method can not only output samples close to real images but also allow for stochastic variation in image diversity.


Asunto(s)
Diagnóstico por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Nódulos Pulmonares Múltiples/diagnóstico por imagen , Redes Neurales de la Computación , Tomografía Computarizada por Rayos X/métodos , Bases de Datos Factuales , Diagnóstico por Computador/métodos , Humanos , Nódulos Pulmonares Múltiples/patología
16.
Transl Oncol ; 11(6): 1370-1378, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30216762

RESUMEN

PURPOSE: To distinguish hepatocellular carcinoma (HCC) from other types of hepatic lesions with the adaptive multi-exponential IVIM model. METHODS: 94 hepatic focal lesions, including 38 HCC, 16 metastasis, 12 focal nodular hyperplasia, 13 cholangiocarcinoma, and 15 hemangioma, were examined in this study. Diffusion-weighted images were acquired with 13 b values (b = 0, 3, …, 500 s/mm2) to measure the adaptive multi-exponential IVIM parameters, namely, pure diffusion coefficient (D), diffusion fraction (fd), pseudo-diffusion coefficient (Di*) and perfusion-related diffusion fraction (fi) of the ith perfusion component. Comparison of the parameters of and their diagnostic performance was determined using Mann-Whitney U test, independent-sample t test, one-way analysis of variance, Z test and receiver-operating characteristic analysis. RESULTS: D, D1* and D2* presented significantly difference between HCCs and other hepatic lesions, whereas fd, f1 and f2 did not show statistical differences. In the differential diagnosis of HCCs from other hepatic lesions, D2* (AUC, 0.927) provided best diagnostic performance among all parameters. Additionally, the number of exponential terms in the model was also an important indicator for distinguishing HCCs from other hepatic lesions. In the benign and malignant analysis, D gave the greatest AUC values, 0.895 or 0.853, for differentiation between malignant and benign lesions with three or two exponential terms. Most parameters were not significantly different between hypovascular and hypervascular lesions. For multiple comparisons, significant differences of D, D1* or D2* were found between certain lesion types. CONCLUSION: The adaptive multi-exponential IVIM model was useful and reliable to distinguish HCC from other hepatic lesions.

17.
Phys Med Biol ; 63(21): 215003, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30265658

RESUMEN

Diffusion tensor imaging (DTI) is a non-invasive technique used to obtain the 3D fiber structure of whole human hearts, for both in vivo and ex vivo cases. However, by essence, DTI does not measure directly the orientations of myocardial fibers. In contrast, polarized light imaging (PLI) allows for physical measurements of fiber orientations, but only for ex vivo case. This work aims at quantitatively comparing the myocardial fiber orientations of whole human hearts obtained from cardiac DTI with those measured by PLI. Whole human neonatal and infant hearts were first imaged using DTI. The same whole hearts were then imaged using PLI. After DTI and PLI data are registered, the orientations of fibers from the two imaging modalities were finally quantitatively compared. The results show that DTI and PLI have similar variation patterns of elevation and azimuth angles, with some differences in transmural elevation angle range. DTI itself induces an underestimation of the range of transmural elevation angles by a factor of about 25° at the basal and equatorial slices and the reduction of spatial resolution further decreases this range. PLI data exhibit a 15° ± 5° (P < 0.01) narrower transmural elevation angle range at apical slices than in basal or equatorial slices. This phenomenon is not observed in DTI data. In both modalities, the azimuth angle maps exhibit curved or twisting boundaries at the basal and apical slices. The experimental results globally enforce DTI as a valid imaging technique to reasonably characterize fiber orientations of the human heart noninvasively.


Asunto(s)
Imagen de Difusión Tensora/métodos , Corazón/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Miocardio/patología , Neuroimagen/métodos , Imagen Óptica/métodos , Corazón/fisiología , Humanos , Lactante , Recién Nacido
18.
Phys Med Biol ; 62(21): 8197-8209, 2017 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-28914609

RESUMEN

The aim of this work was to investigate the effect of multiple perfusion components on the pseudo-diffusion coefficient D * in the bi-exponential intravoxel incoherent motion (IVIM) model. Simulations were first performed to examine how the presence of multiple perfusion components influences D *. The real data of livers (n = 31), spleens (n = 31) and kidneys (n = 31) of 31 volunteers was then acquired using DWI for in vivo study and the number of perfusion components in these tissues was determined together with their perfusion fraction and D *, using an adaptive multi-exponential IVIM model. Finally, the bi-exponential model was applied to the real data and the mean, standard variance and coefficient of variation of D * as well as the fitting residual were calculated over the 31 volunteers for each of the three tissues and compared between them. The results of both the simulations and the in vivo study showed that, for the bi-exponential IVIM model, both the variance of D * and the fitting residual tended to increase when the number of perfusion components was increased or when the difference between perfusion components became large. In addition, it was found that the kidney presented the fewest perfusion components among the three tissues. The present study demonstrated that multi-component perfusion is a main factor that causes high variance of D * and the bi-exponential model should be used only when the tissues under investigation have few perfusion components, for example the kidney.


Asunto(s)
Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Movimiento/fisiología , Perfusión , Humanos , Riñón , Hígado , Masculino , Bazo
19.
Magn Reson Med ; 76(5): 1594-1603, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27747940

RESUMEN

PURPOSE: A generalized intravoxel incoherent motion (IVIM) model, called the GIVIM, was proposed to better account for complex perfusion present in the tissues having various vessels and flow regimes, such as the liver. THEORY AND METHODS: The notions of continuous pseudodiffusion variable as well as perfusion fraction density function were introduced to describe the presence of multiple perfusion components in a voxel. The mean and standard deviation of Gaussian perfusion fraction density function were then used to define two new parameters, the mean pseudodiffusivity ( D¯) and pseudodiffusion dispersion (σ). The GIVIM model was evaluated by testing whether or not it can reflect hepatic perfusion difference caused by flow-compensated imaging sequences having different diffusion times. Also, D¯ was compared with D* in the standard IVIM model. RESULTS: The values of both D* and D¯ decreased after flow compensation and further decreased when shortening diffusion time. D¯ exhibited reduced variance in comparison with D*. In addition, σ also showed its sensitivity to hepatic perfusion difference caused by the flow-compensated imaging sequences. CONCLUSION: The GIVIM model has the ability to better describe multicomponent perfusion without lengthening acquisition time and knowing in advance the number and/or the variety of perfusion components. Magn Reson Med 76:1594-1603, 2016. © 2015 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Interpretación de Imagen Asistida por Computador/métodos , Circulación Hepática/fisiología , Hígado/diagnóstico por imagen , Hígado/fisiología , Angiografía por Resonancia Magnética/métodos , Modelos Biológicos , Algoritmos , Simulación por Computador , Humanos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Hígado/irrigación sanguínea , Modelos Estadísticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
20.
IEEE Trans Med Imaging ; 35(11): 2486-2496, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27323360

RESUMEN

Cardiac myofibre deformation is an important determinant of the mechanical function of the heart. Quantification of myofibre strain relies on 3D measurements of ventricular wall motion interpreted with respect to the tissue microstructure. In this study, we estimated in vivo myofibre strain using 3D structural and functional atlases of the human heart. A finite element modelling framework was developed to incorporate myofibre orientations of the left ventricle (LV) extracted from 7 explanted normal human hearts imaged ex vivo with diffusion tensor magnetic resonance imaging (DTMRI) and kinematic measurements from 7 normal volunteers imaged in vivo with tagged MRI. Myofibre strain was extracted from the DTMRI and 3D strain from the tagged MRI. We investigated: i) the spatio-temporal variation of myofibre strain throughout the cardiac cycle; ii) the sensitivity of myofibre strain estimates to the variation in myofibre angle between individuals; and iii) the sensitivity of myofibre strain estimates to variations in wall motion between individuals. Our analysis results indicate that end systolic (ES) myofibre strain is approximately homogeneous throughout the entire LV, irrespective of the inter-individual variation in myofibre orientation. Additionally, inter-subject variability in myofibre orientations has greater effect on the variabilities in myofibre strain estimates than the ventricular wall motions. This study provided the first quantitative evidence of homogeneity of ES myofibre strain using minimally-invasive medical images of the human heart and demonstrated that image-based modelling framework can provide detailed insight to the mechanical behaviour of the myofibres, which may be used as a biomarker for cardiac diseases that affect cardiac mechanics.


Asunto(s)
Corazón/diagnóstico por imagen , Corazón/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Cardiovasculares , Contracción Miocárdica/fisiología , Miofibrillas/fisiología , Fenómenos Biomecánicos , Técnicas de Imagen Cardíaca , Análisis de Elementos Finitos , Humanos , Imagen por Resonancia Magnética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...