Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 6883, 2023 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-37898620

RESUMEN

Exosomes are secreted to the extracellular milieu when multivesicular endosomes (MVEs) dock and fuse with the plasma membrane. However, MVEs are also known to fuse with lysosomes for degradation. How MVEs are directed to the plasma membrane for exosome secretion rather than to lysosomes is unclear. Here we report that a conversion of phosphatidylinositol-3-phosphate (PI(3)P) to phosphatidylinositol-4-phosphate (PI(4)P) catalyzed sequentially by Myotubularin 1 (MTM1) and phosphatidylinositol 4-kinase type IIα (PI4KIIα) on the surface of MVEs mediates the recruitment of the exocyst complex. The exocyst then targets the MVEs to the plasma membrane for exosome secretion. We further demonstrate that disrupting PI(4)P generation or exocyst function blocked exosomal secretion of Programmed death-ligand 1 (PD-L1), a key immune checkpoint protein in tumor cells, and led to its accumulation in lysosomes. Together, our study suggests that the PI(3)P to PI(4)P conversion on MVEs and the recruitment of the exocyst direct the exocytic trafficking of MVEs for exosome secretion.


Asunto(s)
Exosomas , Exosomas/metabolismo , Endosomas/metabolismo , Fosfatidilinositoles/metabolismo , Cuerpos Multivesiculares/metabolismo
2.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36169639

RESUMEN

Melanosomes are pigment cell-specific lysosome-related organelles in which melanin pigments are synthesized and stored. Melanosome maturation requires delivery of melanogenic cargoes via tubular transport carriers that emanate from early endosomes and that require BLOC-1 for their formation. Here we show that phosphatidylinositol-4-phosphate (PtdIns4P) and the type II PtdIns-4-kinases (PI4KIIα and PI4KIIß) support BLOC-1-dependent tubule formation to regulate melanosome biogenesis. Depletion of either PI4KIIα or PI4KIIß with shRNAs in melanocytes reduced melanin content and misrouted BLOC-1-dependent cargoes to late endosomes/lysosomes. Genetic epistasis, cell fractionation, and quantitative live-cell imaging analyses show that PI4KIIα and PI4KIIß function sequentially and non-redundantly downstream of BLOC-1 during tubule elongation toward melanosomes by generating local pools of PtdIns4P. The data show that both type II PtdIns-4-kinases are necessary for efficient BLOC-1-dependent tubule elongation and subsequent melanosome contact and content delivery during melanosome biogenesis. The independent functions of PtdIns-4-kinases in tubule extension are downstream of likely redundant functions in BLOC-1-dependent tubule initiation.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa , Endosomas , Melaninas , Melanosomas , 1-Fosfatidilinositol 4-Quinasa/metabolismo , Endosomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Melaninas/metabolismo , Melanocitos/metabolismo , Melanosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas
3.
J Cell Biol ; 221(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36169638

RESUMEN

Intracellular trafficking is mediated by transport carriers that originate by membrane remodeling from donor organelles. Tubular carriers contribute to the flux of membrane lipids and proteins to acceptor organelles, but how lipids and proteins impose a tubular geometry on the carriers is incompletely understood. Using imaging approaches on cells and in vitro membrane systems, we show that phosphatidylinositol-4-phosphate (PI4P) and biogenesis of lysosome-related organelles complex 1 (BLOC-1) govern the formation, stability, and functions of recycling endosomal tubules. In vitro, BLOC-1 binds and tubulates negatively charged membranes, including those containing PI4P. In cells, endosomal PI4P production by type II PI4-kinases is needed to form and stabilize BLOC-1-dependent recycling endosomal tubules. Decreased PI4KIIs expression impairs the recycling of endosomal cargoes and the life cycles of intracellular pathogens such as Chlamydia bacteria and influenza virus that exploit the membrane dynamics of recycling endosomes. This study demonstrates how a phospholipid and a protein complex coordinate the remodeling of cellular membranes into functional tubules.


Asunto(s)
Endosomas , Membranas Intracelulares , Péptidos y Proteínas de Señalización Intracelular , Fosfatos de Fosfatidilinositol , Membrana Celular/metabolismo , Endosomas/metabolismo , Membranas Intracelulares/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transporte de Proteínas
4.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33886957

RESUMEN

Membrane transport carriers fuse with target membranes through engagement of cognate vSNAREs and tSNAREs on each membrane. How vSNAREs are sorted into transport carriers is incompletely understood. Here we show that VAMP7, the vSNARE for fusing endosome-derived tubular transport carriers with maturing melanosomes in melanocytes, is sorted into transport carriers in complex with the tSNARE component STX13. Sorting requires either recognition of VAMP7 by the AP-3δ subunit of AP-3 or of STX13 by the pallidin subunit of BLOC-1, but not both. Consequently, melanocytes expressing both AP-3δ and pallidin variants that cannot bind their respective SNARE proteins are hypopigmented and fail to sort BLOC-1-dependent cargo, STX13, or VAMP7 into transport carriers. However, SNARE binding does not influence BLOC-1 function in generating tubular transport carriers. These data reveal a novel mechanism of vSNARE sorting by recognition of redundant sorting determinants on a SNARE complex by an AP-3-BLOC-1 super-complex.


Asunto(s)
Complejo 3 de Proteína Adaptadora/genética , Subunidades delta de Complexo de Proteína Adaptadora/genética , Proteínas del Tejido Nervioso/genética , Proteínas Qa-SNARE/genética , Proteínas R-SNARE/genética , Endosomas/genética , Humanos , Melanocitos/metabolismo , Melanosomas/genética , Transporte de Proteínas/genética
5.
Proc Natl Acad Sci U S A ; 117(45): 28251-28262, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33109721

RESUMEN

Toll-like receptor (TLR) recruitment to phagosomes in dendritic cells (DCs) and downstream TLR signaling are essential to initiate antimicrobial immune responses. However, the mechanisms underlying TLR localization to phagosomes are poorly characterized. We show herein that phosphatidylinositol-4-kinase IIα (PI4KIIα) plays a key role in initiating phagosomal TLR4 responses in murine DCs by generating a phosphatidylinositol-4-phosphate (PtdIns4P) platform conducive to the binding of the TLR sorting adaptor Toll-IL1 receptor (TIR) domain-containing adaptor protein (TIRAP). PI4KIIα is recruited to maturing lipopolysaccharide (LPS)-containing phagosomes in an adaptor protein-3 (AP-3)-dependent manner, and both PI4KIIα and PtdIns4P are detected on phagosomal membrane tubules. Knockdown of PI4KIIα-but not the related PI4KIIß-impairs TIRAP and TLR4 localization to phagosomes, reduces proinflammatory cytokine secretion, abolishes phagosomal tubule formation, and impairs major histocompatibility complex II (MHC-II) presentation. Phagosomal TLR responses in PI4KIIα-deficient DCs are restored by reexpression of wild-type PI4KIIα, but not of variants lacking kinase activity or AP-3 binding. Our data indicate that PI4KIIα is an essential regulator of phagosomal TLR signaling in DCs by ensuring optimal TIRAP recruitment to phagosomes.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Células Dendríticas/inmunología , Complejo Mayor de Histocompatibilidad/fisiología , Fagosomas/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células de la Médula Ósea , Citocinas/metabolismo , Lipopolisacáridos , Ratones , Transducción de Señal , Receptor Toll-Like 4/genética , Receptores Toll-Like/metabolismo
6.
J Invest Dermatol ; 140(2): 257-268.e8, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31980058

RESUMEN

Pigmentation of the skin and hair represents the result of melanin biosynthesis within melanosomes of epidermal melanocytes, followed by the transfer of mature melanin granules to adjacent keratinocytes within the basal layer of the epidermis. Natural variation in these processes produces the diversity of skin and hair color among human populations, and defects in these processes lead to diseases such as oculocutaneous albinism. While genetic regulators of pigmentation have been well studied in human and animal models, we are still learning much about the cell biological features that regulate melanogenesis, melanosome maturation, and melanosome motility in melanocytes, and have barely scratched the surface in our understanding of melanin transfer from melanocytes to keratinocytes. Herein, we describe cultured cell model systems and common assays that have been used by investigators to dissect these features and that will hopefully lead to additional advances in the future.


Asunto(s)
Técnicas de Cultivo de Célula , Melaninas/análisis , Melanosomas/química , Trastornos de la Pigmentación/patología , Pigmentación de la Piel/fisiología , Animales , Técnicas de Cocultivo , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Intravital/métodos , Queratinocitos/metabolismo , Melaninas/metabolismo , Melanosomas/metabolismo , Melanosomas/ultraestructura , Microscopía Electrónica de Transmisión/métodos , Microscopía Fluorescente/métodos , Proyectos de Investigación , Espectrofotometría/métodos
7.
Small GTPases ; 10(5): 331-335, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-28489961

RESUMEN

The exocyst complex mediates the tethering of secretory vesicles to the plasma membrane before SNARE-mediated membrane fusion. Recent studies have implicated the exocyst in a wide range of cellular processes. Particularly, research on the Exo70 subunit of the complex has linked the function of the exocyst in exocytosis to cell adhesion, migration and invasion. In this review, we will discuss the recent work on how Exo70 regulates these cellular processes, and how small GTPases and kinases interact with Exo70 to orchestrate its function in exocytosis and cytoskeleton organization. The study of Exo70 contributes to the understanding of many pathophysiological processes from organogenesis to cancer metastasis.


Asunto(s)
Citoesqueleto/metabolismo , Exocitosis , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Organogénesis , Proteínas de Transporte Vesicular/metabolismo , Animales , Adhesión Celular , Movimiento Celular , Citoesqueleto/genética , Humanos , Invasividad Neoplásica , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/patología , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas de Transporte Vesicular/genética
9.
Nature ; 550(7674): 133-136, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28953887

RESUMEN

Targeted BRAF inhibition (BRAFi) and combined BRAF and MEK inhibition (BRAFi and MEKi) therapies have markedly improved the clinical outcomes of patients with metastatic melanoma. Unfortunately, the efficacy of these treatments is often countered by the acquisition of drug resistance. Here we investigated the molecular mechanisms that underlie acquired resistance to BRAFi and to the combined therapy. Consistent with previous studies, we show that resistance to BRAFi is mediated by ERK pathway reactivation. Resistance to the combined therapy, however, is mediated by mechanisms independent of reactivation of ERK in many resistant cell lines and clinical samples. p21-activated kinases (PAKs) become activated in cells with acquired drug resistance and have a pivotal role in mediating resistance. Our screening, using a reverse-phase protein array, revealed distinct mechanisms by which PAKs mediate resistance to BRAFi and the combined therapy. In BRAFi-resistant cells, PAKs phosphorylate CRAF and MEK to reactivate ERK. In cells that are resistant to the combined therapy, PAKs regulate JNK and ß-catenin phosphorylation and mTOR pathway activation, and inhibit apoptosis, thereby bypassing ERK. Together, our results provide insights into the molecular mechanisms underlying acquired drug resistance to current targeted therapies, and may help to direct novel drug development efforts to overcome acquired drug resistance.


Asunto(s)
Resistencia a Antineoplásicos/efectos de los fármacos , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal/efectos de los fármacos , Quinasas p21 Activadas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Activación Enzimática/efectos de los fármacos , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/enzimología , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/química , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-raf/química , Proteínas Proto-Oncogénicas c-raf/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , beta Catenina/química , beta Catenina/metabolismo , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/genética
11.
Nat Commun ; 8: 14236, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112172

RESUMEN

The soluble N-ethylmaleimide-sensitive factor-attachment protein receptors (SNAREs) constitute the core machinery for membrane fusion during eukaryotic cell vesicular trafficking. However, how the assembly of the SNARE complex is initiated is unknown. Here we report that Sec3, a component of the exocyst complex that mediates vesicle tethering during exocytosis, directly interacts with the t-SNARE protein Sso2. This interaction promotes the formation of an Sso2-Sec9 'binary' t-SNARE complex, the early rate-limiting step in SNARE complex assembly, and stimulates membrane fusion. The crystal structure of the Sec3-Sso2 complex suggests that Sec3 binding induces conformational changes of Sso2 that are crucial for the relief of its auto-inhibition. Interestingly, specific disruption of the Sec3-Sso2 interaction in cells blocks exocytosis without affecting the function of Sec3 in vesicle tethering. Our study reveals an activation mechanism for SNARE complex assembly, and uncovers a role of the exocyst in promoting membrane fusion in addition to vesicle tethering.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Extractos Celulares , Membrana Celular , Cristalización , Regulación de la Expresión Génica , Regulación Fúngica de la Expresión Génica/fisiología , Liposomas , Modelos Moleculares , Unión Proteica , Conformación Proteica , Proteínas Qa-SNARE/genética , Proteínas SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Cell Rep ; 15(9): 2012-24, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27210749

RESUMEN

Melanoma patients with oncogenic BRAF(V600E) mutation have poor prognoses. While the role of BRAF(V600E) in tumorigenesis is well established, its involvement in metastasis that is clinically observed in melanoma patients remains a topic of debate. Here, we show that BRAF(V600E) melanoma cells have extensive invasion activity as assayed by the generation of F-actin and cortactin foci that mediate membrane protrusion, and degradation of the extracellular matrix (ECM). Inhibition of BRAF(V600E) blocks melanoma cell invasion. In a BRAF(V600E)-driven murine melanoma model or in patients' tumor biopsies, cortactin foci decrease upon inhibitor treatment. In addition, genome-wide expression analysis shows that a number of invadopodia-related genes are downregulated after BRAF(V600E) inhibition. Mechanistically, BRAF(V600E) induces phosphorylation of cortactin and the exocyst subunit Exo70 through ERK, which regulates actin dynamics and matrix metalloprotease secretion, respectively. Our results provide support for the role of BRAF(V600E) in metastasis and suggest that inhibiting invasion is a potential therapeutic strategy against melanoma.


Asunto(s)
Melanoma/genética , Melanoma/patología , Oncogenes , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Actinas/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Extensiones de la Superficie Celular/metabolismo , Cortactina/metabolismo , Matriz Extracelular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ingeniería Genética , Humanos , Ratones , Invasividad Neoplásica , Fosforilación , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas de Transporte Vesicular/metabolismo
13.
Dev Cell ; 37(4): 326-336, 2016 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-27219061

RESUMEN

Autophagic lysosome reformation (ALR) plays an important role in maintaining lysosome homeostasis. During ALR, lysosomes are reformed by recycling lysosomal components from autolysosomes. The most noticeable step of ALR is autolysosome tubulation, but it is currently unknown how the process is regulated. Here, using an approach combining in vivo studies and in vitro reconstitution, we found that the kinesin motor protein KIF5B is required for autolysosome tubulation and that KIF5B drives autolysosome tubulation by pulling on the autolysosomal membrane. Furthermore, we show that KIF5B directly interacts with PtdIns(4,5)P2. Kinesin motors are recruited and clustered on autolysosomes via interaction with PtdIns(4,5)P2 in a clathrin-dependent manner. Finally, we demonstrate that clathrin promotes formation of PtdIns(4,5)P2-enriched microdomains, which are required for clustering of KIF5B. Our study reveals a mechanism by which autolysosome tubulation was generated.


Asunto(s)
Autofagia , Cinesinas/metabolismo , Lisosomas/metabolismo , Animales , Clatrina/metabolismo , Liposomas/metabolismo , Microdominios de Membrana/metabolismo , Modelos Biológicos , Fosfatidilinositol 4,5-Difosfato/metabolismo , Ratas
14.
Sci Rep ; 6: 24002, 2016 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-27052881

RESUMEN

Intracellular membrane nanotube formation and its dynamics play important roles for cargo transportation and organelle biogenesis. Regarding the regulation mechanisms, while much attention has been paid on the lipid composition and its associated protein molecules, effects of the vesicle size has not been studied in the cell. Giant unilamellar vesicles (GUVs) are often used for in vitro membrane deformation studies, but they are much larger than most intracellular vesicles and the in vitro studies also lack physiological relevance. Here, we use lysosomes and autolysosomes, whose sizes range between 100 nm and 1 µm, as model systems to study the size effects on nanotube formation both in vivo and in vitro. Single molecule observations indicate that driven by kinesin motors, small vesicles (100-200 nm) are mainly transported along the tracks while a remarkable portion of large vesicles (500-1000 nm) form nanotubes. This size effect is further confirmed by in vitro reconstitution assays on liposomes and purified lysosomes and autolysosomes. We also apply Atomic Force Microscopy (AFM) to measure the initiation force for nanotube formation. These results suggest that the size-dependence may be one of the mechanisms for cells to regulate cellular processes involving membrane-deformation, such as the timing of tubulation-mediated vesicle recycling.


Asunto(s)
Autofagosomas/metabolismo , Células Epiteliales/metabolismo , Lisosomas/metabolismo , Nanotubos/análisis , Liposomas Unilamelares/metabolismo , Animales , Autofagosomas/ultraestructura , Transporte Biológico , Western Blotting , Línea Celular , Riñón/citología , Cinesinas/genética , Cinesinas/metabolismo , Lisosomas/ultraestructura , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Rastreo/métodos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Nanotubos/ultraestructura , Ratas , Células Sf9 , Spodoptera
15.
Cell Res ; 25(10): 1108-20, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26206315

RESUMEN

Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.


Asunto(s)
Cinesinas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Dinámicas Mitocondriales , Animales , Línea Celular , GTP Fosfohidrolasas , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA