Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 712-713: 149939, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38640729

RESUMEN

Human heavy-chain ferritin is a naturally occurring protein with high stability and multifunctionality in biological systems. This study aims to utilize a prokaryotic expression system to produce recombinant human heavy-chain ferritin nanoparticles and investigate their targeting ability in brain tissue. The human heavy-chain ferritin gene was cloned into the prokaryotic expression vector pET28a and transformed into Escherichia coli BL21 (DE3) competent cells to explore optimal expression conditions. The recombinant protein was then purified to evaluate its immunoreactivity and characteristics. Additionally, the distribution of the administered protein in normal mice and its permeability in an in vitro blood-brain barrier (BBB) model were measured. The results demonstrate that the purified protein can self-assemble extracellularly into nano-cage structures of approximately 10 nm and is recognized by corresponding antibodies. The protein effectively penetrates the blood-brain barrier and exhibits slow clearance in mouse brain tissue, showing excellent permeability in the in vitro BBB model. This study highlights the stable expression of recombinant human heavy-chain ferritin using the Escherichia coli prokaryotic expression system, characterized by favorable nano-cage structures and biological activity. Its exceptional brain tissue targeting and slow metabolism lay an experimental foundation for its application in neuropharmaceutical delivery and vaccine development fields.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Escherichia coli , Ferritinas , Nanopartículas , Proteínas Recombinantes , Animales , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ratones , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nanopartículas/química , Ferritinas/metabolismo , Ferritinas/genética , Ferritinas/química , Apoferritinas/metabolismo , Apoferritinas/genética , Apoferritinas/química , Distribución Tisular
2.
Parasit Vectors ; 16(1): 453, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38093363

RESUMEN

Schistosomiasis, the second largest parasitic disease in the world after malaria, poses a significant threat to human health and causes public health issues. The disease primarily affects populations in economically underdeveloped tropical regions, earning it the title of "neglected tropical disease". Schistosomiasis is difficult to eradicate globally if medication alone is used. One of the essential elements of thorough schistosomiasis prevention and control is the management and disruption of the life cycle of intermediate host snails. The key approach to controlling the transmission of schistosomiasis is to control the intermediate hosts of the schistosome to disrupt its life cycle. We believe that approaching it from the perspective of the intermediate host's immunity could be an environmentally friendly and potentially effective method. Currently, globally significant intermediate host snails for schistosomes include Oncomelania hupensis, Biomphalaria glabrata, and Bulinus truncatus. The immune interaction research between B. glabrata and Schistosoma mansoni has a history of several decades, and the complete genome sequencing of both B. glabrata and B. truncatus has been accomplished. We have summarized the immune-related factors and research progress primarily studied in B. glabrata and B. truncatus and compared them with several humoral immune factors that O. hupensis research focuses on: macrophage migration inhibitory factor (MIF), Toll-like receptors (TLRs), and thioredoxin (Trx). We believe that continued exploration of the immune interactions between O. hupensis and Schistosoma japonicum is valuable. This comparative analysis can provide some direction and clues for further in-depth research. Comparative immunological studies between them not only expand our understanding of the immune defense responses of snails that act as intermediaries for schistosomes but also facilitate the development of more comprehensive and integrated strategies for schistosomiasis prevention and control. Furthermore, it offers an excellent opportunity to study the immune system of gastropods and their co-evolution with pathogenic organisms.


Asunto(s)
Biomphalaria , Schistosoma japonicum , Esquistosomiasis , Animales , Humanos , Schistosoma japonicum/genética , Esquistosomiasis/parasitología , Biomphalaria/parasitología , Bulinus , Schistosoma mansoni
3.
Molecules ; 28(22)2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38005401

RESUMEN

Cancer, on a global scale, presents a monumental challenge to our healthcare systems, posing a significant threat to human health. Despite the considerable progress we have made in the diagnosis and treatment of cancer, realizing precision cancer therapy, reducing side effects, and enhancing efficacy remain daunting tasks. Fortunately, the emergence of therapeutic viruses and nanomaterials provides new possibilities for tackling these issues. Therapeutic viruses possess the ability to accurately locate and attack tumor cells, while nanomaterials serve as efficient drug carriers, delivering medication precisely to tumor tissues. The synergy of these two elements has led to a novel approach to cancer treatment-the combination of therapeutic viruses and nanomaterials. This advantageous combination has overcome the limitations associated with the side effects of oncolytic viruses and the insufficient tumoricidal capacity of nanomedicines, enabling the oncolytic viruses to more effectively breach the tumor's immune barrier. It focuses on the lesion site and even allows for real-time monitoring of the distribution of therapeutic viruses and drug release, achieving a synergistic effect. This article comprehensively explores the application of therapeutic viruses and nanomaterials in tumor treatment, dissecting their working mechanisms, and integrating the latest scientific advancements to predict future development trends. This approach, which combines viral therapy with the application of nanomaterials, represents an innovative and more effective treatment strategy, offering new perspectives in the field of tumor therapy.


Asunto(s)
Nanoestructuras , Neoplasias , Viroterapia Oncolítica , Virus Oncolíticos , Humanos , Neoplasias/tratamiento farmacológico , Nanoestructuras/uso terapéutico , Portadores de Fármacos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA