Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
2.
Eur J Pharm Biopharm ; 201: 114353, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885911

RESUMEN

The latent reservoir of human immunodeficiency virus (HIV) is a major obstacle in the treatment of acquired immune deficiency syndrome (AIDS). The "shock and kill" strategy has emerged as a promising approach for clearing HIV latent reservoirs. However, current latency-reversing agents (LRAs) have limitations in effectively and safely activating the latent virus and reducing the HIV latent reservoirs in clinical practice. Previously, EK-16A was extracted from Euphorbia kansui, which had the effect of interfering with the HIV-1 latent reservoir and inhibiting HIV-1 entry. Nevertheless, there is no suitable and efficient EK-16A oral formulation for in vivo delivery and clinical use. In this study, an oral EK-16A self-nanoemulsifying drug delivery system (EK-16A-SNEDDS) was proposed to "shock" the HIV-1 latent reservoir. This system aims to enhance the bioavailability and delivery of EK-16A to various organs. The composition of EK-16A-SNEDDS was optimized through self-emulsifying grading and ternary phase diagram tests. Cell models, pharmacokinetic experiments, and pharmacodynamics in HIV-1 latent cell transplant animal models suggested that EK-16A-SNEDDS could be absorbed by the gastrointestinal tract and enter the blood circulation after oral administration, thereby reaching various organs to activate latent HIV-1. The prepared EK-16A-SNEDDS demonstrated safety and efficacy, exhibited high clinical experimental potential, and may be a promising oral preparation for eliminating HIV-1 latent reservoirs.


Asunto(s)
Emulsiones , VIH-1 , Latencia del Virus , VIH-1/efectos de los fármacos , Latencia del Virus/efectos de los fármacos , Animales , Administración Oral , Humanos , Activación Viral/efectos de los fármacos , Euphorbia/química , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Extractos Vegetales/administración & dosificación , Extractos Vegetales/farmacología , Disponibilidad Biológica , Sistema de Administración de Fármacos con Nanopartículas , Fármacos Anti-VIH/administración & dosificación , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/farmacocinética , Masculino , Sistemas de Liberación de Medicamentos/métodos , Ratones
3.
Adv Sci (Weinh) ; : e2402457, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940427

RESUMEN

Transmembrane protein 52B (TMEM52B), a newly identified tumor-related gene, has been reported to regulate various tumors, yet its role in nasopharyngeal carcinoma (NPC) remains unclear. Transcriptomic analysis of NPC cell lines reveals frequent overexpression of TMEM52B, and immunohistochemical results show that TMEM52B is associated with advanced tumor stage, recurrence, and decreased survival time. Depleting TMEM52B inhibits the proliferation, migration, invasion, and oncogenesis of NPC cells in vivo. TMEM52B encodes two isoforms, TMEM52B-P18 and TMEM52B-P20, differing in their N-terminals. While both isoforms exhibit similar pro-oncogenic roles and contribute to drug resistance in NPC, TMEM52B-P20 differentially promotes metastasis. This functional discrepancy may be attributed to their distinct subcellular localization; TMEM52B-P18 is confined to the cytoplasm, while TMEM52B-P20 is found both at the cell membrane and in the cytoplasm. Mechanistically, cytoplasmic TMEM52B enhances AKT phosphorylation by interacting with phosphoglycerate kinase 1 (PGK1), fostering NPC growth and metastasis. Meanwhile, membrane-localized TMEM52B-P20 promotes E-cadherin ubiquitination and degradation by facilitating its interaction with the E3 ubiquitin ligase NEDD4, further driving NPC metastasis. In conclusion, the TMEM52B-P18 and TMEM52B-P20 isoforms promote the metastasis of NPC cells through different mechanisms. Drugs targeting these TMEM52B isoforms may offer therapeutic benefits to cancer patients with varying degrees of metastasis.

4.
Skin Res Technol ; 30(6): e13772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899729

RESUMEN

BACKGROUND: Transient Receptor Potential Mucolipin 1 (TRPML1) serves as a pivotal reactive oxygen species (ROS) sensor in cells, which is implicated in the regulation of autophagy. However, its function in melanocyte autophagy under oxidative stress remains elusive. METHODS: The expression and ion channel function of TRPML1 were investigated using immunofluorescence and calcium imaging in primary human melanocytes (MCs). After activating TRPML1 with MLSA1 (TRPML1 agonist), autophagy-related molecules were investigated via western blot. ROS level, apoptosis- and autophagy-related molecules were investigated after pretreatment with MLSA1. After interference with TRPML1 expression, mitochondrial structures were visualized by electron microscopy with hydrogen peroxide (H2O2)treatment. RESULTS: TRPML1 was expressed and functionally active in primary human MCs, and its activation promotes elevated expression of LC3-II and reduced apoptosis and ROS levels under oxidative stress. TRPML1 downregulation caused mitochondrial swelling and disruption of cristae structures under oxidative stress in primary human MCs. CONCLUSIONS: TRPML1 might mediate lysosomal autophagy in primary human MCs under oxidative stress, participating in mechanisms that maintain the oxidative and antioxidant systems in balance.


Asunto(s)
Melanocitos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Canales de Potencial de Receptor Transitorio , Humanos , Apoptosis , Autofagia , Calcio/metabolismo , Células Cultivadas , Peróxido de Hidrógeno/farmacología , Melanocitos/metabolismo , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo
5.
Ecotoxicol Environ Saf ; 281: 116662, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944008

RESUMEN

OBJECTIVE: This study aimed to investigate the mechanism that Lactobacillus murinus (L. murinus) alleviated lung inflammation induced by polycyclic aromatic hydrocarbons (PAHs) exposure based on metabolomics. METHODS: Female mice were administrated with PAHs mix, L. murinus and indoleacrylic acid (IA) or indolealdehyde (IAId). Microbial diversity in feces was detected by 16 S rRNA gene sequencing. Non-targeted metabolomics analysis in urine samples and targeted analysis of tryptophan metabolites in serum by UPLC-Orbitrap-MS and short-chain fatty acids (SCFA) in feces by GC-MS were performed, respectively. Flow cytometry was used to determine T helper immune cell differentiation in gut and lung tissues. The levels of IgE, IL-4 and IL-17A in the bronchoalveolar lavage fluid (BALF) or serum were detected by ELISA. The expressions of aryl hydrocarbon receptor (Ahr), cytochrome P450 1A1 (Cyp1a1) and forkheadbox protein 3 (Foxp3) genes and the histone deacetylation activity were detected by qPCR and by ELISA in lung tissues, respectively. RESULTS: PAHs exposure induced lung inflammation and microbial composition shifts and tryptophan metabolism disturbance in mice. L. murinus alleviated PAHs-induced lung inflammation and inhibited T helper cell 17 (Th17) cell differentiation and promoted regulatory T cells (Treg) cell differentiation. L. murinus increased the levels of IA and IAId in the serum and regulated Th17/Treg imbalance by activating AhR. Additionally, L. murinus restored PAHs-induced decrease of butyric acid and valeric acid which can reduce the histone deacetylase (HDAC) level in the lung tissues, enhancing the expression of the Foxp3 gene and promoting Treg cell differentiation. CONCLUSION: our study illustrated that L. murinus alleviated PAHs-induced lung inflammation and regulated Th17/Treg cell differentiation by regulating host tryptophan metabolism and SCFA levels. The study provided new insights into the reciprocal influence between gut microbiota, host metabolism and the immune system, suggesting that L. murinus might have the potential as a novel therapeutic strategy for lung diseases caused by environmental pollution in the future.


Asunto(s)
Lactobacillus , Neumonía , Hidrocarburos Policíclicos Aromáticos , Animales , Ratones , Femenino , Hidrocarburos Policíclicos Aromáticos/toxicidad , Neumonía/inducido químicamente , Neumonía/tratamiento farmacológico , Receptores de Hidrocarburo de Aril/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/inmunología , Triptófano , Células Th17/efectos de los fármacos , Células Th17/inmunología , Probióticos/farmacología , Probióticos/uso terapéutico , Microbioma Gastrointestinal/efectos de los fármacos , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/química , Metabolómica , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1A1/genética
6.
Toxics ; 12(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38787132

RESUMEN

The increasing concern over climate change has spurred significant interest in exploring the potential of microalgae for wastewater treatment. Among the various types of industrial wastewaters, high-salinity NH4+-N wastewater stands out as a common challenge. Investigating microalgae's resilience to NH4+-N under high-salinity conditions and their efficacy in NH4+-N utilization is crucial for advancing industrial wastewater microalgae treatment technologies. This study evaluated the effectiveness of employing nitrogen-efficient microalgae, specifically Oocystis lacustris, for NH4+-N removal from saline wastewater. The results revealed Oocystis lacustris's tolerance to a Na2SO4 concentration of 5 g/L. When the Na2SO4 concentration reached 10 g/L, the growth inhibition experienced by Oocystis lacustris began to decrease on the 6th day of cultivation, with significant alleviation observed by the 7th day. Additionally, the toxic mechanism of saline NH4+-N wastewater on Oocystis lacustris was analyzed through various parameters, including chlorophyll-a, soluble protein, oxidative stress indicators, key nitrogen metabolism enzymes, and microscopic observations of algal cells. The results demonstrated that when the Oocystis lacustris was in the stationary growth phase with an initial density of 2 × 107 cells/L, NH4+-N concentrations of 1, 5, and 10 mg/L achieved almost 100% removal of the microalgae on the 1st, 2nd, and 4th days of treatment, respectively. On the other hand, saline NH4+-N wastewater minimally impacted photosynthesis, protein synthesis, and antioxidant systems within algal cells. Additionally, NH4+-N within the cells was assimilated into glutamic acid through glutamate dehydrogenase-mediated pathways besides the conventional pathway involving NH4+-N conversion into glutamine and assimilation amino acids.

7.
Cell Signal ; 119: 111167, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604341

RESUMEN

Autophagy is essential for eliminating aging and organelle damage that maintaining cellular homeostasis. However, the dysfunction of autophagy has been proven in hair loss such as AGA. Despite the crucial role of TRPML channels in regulating autophagy, their specific function in hair growth remains unclarified. To investigate the biological functions and associated molecular mechanisms of TRPMLs in hair growth, Animal experiments were conducted to confirm the function of TRLMLs activation in promoting hair growth. Subsequently, we analyzed molecular mechanisms in human dermal papilla cells (hDPCs) activated by TRPMLs through transcriptome sequencing analysis. MLSA1(a TRPML agonist) promoted hair regeneration and accelerated hair cycle transition in mice. The activation of TRPMLs upregulated calcium signaling inducing hDPCs to secrete hair growth promoting factors and decrease hair growth inhibiting factors. In addition, activation of TRPMLs triggered autophagy and reduced the generation of ROS, thereby delaying the senescence of hDPCs. All these findings suggested that TRPMLs activation could promote hair growth by regulating hDPCs secretion of hair growth-related factors. Moreover, it may play a prominent role in preventing hDPCs from ROS damage induced by H2O2 or DHT. Targeting TRPMLs may represent a promising therapeutic strategy for treating hair loss.


Asunto(s)
Autofagia , Cabello , Animales , Ratones , Humanos , Autofagia/efectos de los fármacos , Cabello/crecimiento & desarrollo , Cabello/efectos de los fármacos , Folículo Piloso/efectos de los fármacos , Folículo Piloso/citología , Especies Reactivas de Oxígeno/metabolismo , Ratones Endogámicos C57BL , Dermis/citología , Dermis/efectos de los fármacos , Canales de Potencial de Receptor Transitorio/metabolismo , Señalización del Calcio/efectos de los fármacos
9.
Signal Transduct Target Ther ; 9(1): 42, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355848

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes multi-organ damage, which includes hepatic dysfunction, as observed in over 50% of COVID-19 patients. Angiotensin I converting enzyme (peptidyl-dipeptidase A) 2 (ACE2) is the primary receptor for SARS-CoV-2 entry into host cells, and studies have shown the presence of intracellular virus particles in human hepatocytes that express ACE2, but at extremely low levels. Consequently, we asked if hepatocytes might express receptors other than ACE2 capable of promoting the entry of SARS-CoV-2 into cells. To address this question, we performed a genome-wide CRISPR-Cas9 activation library screening and found that Asialoglycoprotein receptor 1 (ASGR1) promoted SARS-CoV-2 pseudovirus infection of HeLa cells. In Huh-7 cells, simultaneous knockout of ACE2 and ASGR1 prevented SARS-CoV-2 pseudovirus infection. In the immortalized THLE-2 hepatocyte cell line and primary hepatic parenchymal cells, both of which barely expressed ACE2, SARS-CoV-2 pseudovirus could successfully establish an infection. However, after treatment with ASGR1 antibody or siRNA targeting ASGR1, the infection rate significantly dropped, suggesting that SARS-CoV-2 pseudovirus infects hepatic parenchymal cells mainly through an ASGR1-dependent mechanism. We confirmed that ASGR1 could interact with Spike protein, which depends on receptor binding domain (RBD) and N-terminal domain (NTD). Finally, we also used Immunohistochemistry and electron microscopy to verify that SARS-CoV-2 could infect primary hepatic parenchymal cells. After inhibiting ASGR1 in primary hepatic parenchymal cells by siRNA, the infection efficiency of the live virus decreased significantly. Collectively, these findings indicate that ASGR1 is a candidate receptor for SARS-CoV-2 that promotes infection of hepatic parenchymal cells.


Asunto(s)
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2/fisiología , Receptor de Asialoglicoproteína/genética , Células HeLa , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/química , Hepatocitos , ARN Interferente Pequeño
10.
Food Res Int ; 179: 114010, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342535

RESUMEN

Thermal processing is a widely used method to ensure the microbiological safety of milk. Predictive microbiology plays a crucial role in quantifying microbial growth and decline, providing valuable guidance on the design and optimization of food processing operations. This study aimed to investigate the thermal inactivation kinetics of Listeria monocytogenes in milk under both isothermal and dynamic conditions. The thermal inactivation of L. monocytogenes was conducted under isothermal and non-isothermal conditions in sterilized and pasteurized milk, with and without background microbiota, respectively. Furthermore, a secondary model was developed between the shoulder effect and temperature, which was then integrated into the dynamic model. The results showed that L. monocytogenes grown in Tryptic Soy Yeast Extract Broth (TSBYE) prior to thermal inactivation exhibited higher heat resistance compared to cells grown in sterilized milk at isothermal temperatures of 60.0, 62.5, and 65℃. Moreover, the presence of background microbiota in milk significantly enhanced the heat resistance of L. monocytogenes, as evidenced by the increased D-values from 1.13 min to 2.34 min, from 0.46 min to 0.53 min, and from 0.25 min to 0.34 min at 60.0, 62.5, and 65 °C, respectively, regardless of whether the background microbiota was inactivated after co-growth or co-inactivated with L. monocytogenes. For non-isothermal inactivation, the one-step dynamic model based on the log-linear with shoulder model effectively described the microbial inactivation curve and exhibited satisfactory model performance. The model developed contributes to improved risk assessment, enabling dairy processors to optimize thermal treatment and ensure microbiological safety.


Asunto(s)
Microbiología de Alimentos , Listeria monocytogenes , Animales , Leche/microbiología , Recuento de Colonia Microbiana , Calor
11.
Eur Radiol ; 34(8): 5464-5476, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38276982

RESUMEN

OBJECTIVES: To preoperatively evaluate the human epidermal growth factor 2 (HER2) status in breast cancer using mammographic radiomics features and clinical characteristics on a multi-vendor and multi-center basis. METHODS: This multi-center study included a cohort of 1512 Chinese female with invasive ductal carcinoma of no special type (IDC-NST) from two different hospitals and five devices (1332 from Institution A, used for training and testing the models, and 180 women from Institution B, as the external validation cohort). The Gradient Boosting Machine (GBM) was employed to establish radiomics and multiomics models. Model efficacy was evaluated by the area under the curve (AUC). RESULTS: The number of HER2-positive patients in the training, testing, and external validation cohort were 245(26.3%), 105 (26.3.8%), and 51(28.3%), respectively, with no statistical differences among the three cohorts (p = 0.842, chi-square test). The radiomics model, based solely on the radiomics features, achieved an AUC of 0.814 (95% CI, 0.784-0.844) in the training cohort, 0.776 (95% CI, 0.727-0.825) in the testing cohort, and 0.702 (95% CI, 0.614-0.790) in the external validation cohort. The multiomics model, incorporated radiomics features with clinical characteristics, consistently outperformed the radiomics model with AUC values of 0.838 (95% CI, 0.810-0.866) in the training cohort, 0.788 (95% CI, 0.741-0.835) in the testing cohort, and 0.722 (95% CI, 0.637-0.811) in the external validation cohort. CONCLUSIONS: Our study demonstrates that a model based on radiomics features and clinical characteristics has the potential to accurately predict HER2 status of breast cancer patients across multiple devices and centers. CLINICAL RELEVANCE STATEMENT: By predicting the HER2 status of breast cancer reliably, the presented model built upon radiomics features and clinical characteristics on a multi-vendor and multi-center basis can help in bolstering the model's applicability and generalizability in real-world clinical scenarios. KEY POINTS: • The mammographic presentation of breast cancer is closely associated with the status of human epidermal growth factor receptor 2 (HER2). • The radiomics model, based solely on radiomics features, exhibits sub-optimal performance in the external validation cohort. • By combining radiomics features and clinical characteristics, the multiomics model can improve the prediction ability in external data.


Asunto(s)
Neoplasias de la Mama , Mamografía , Receptor ErbB-2 , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Receptor ErbB-2/metabolismo , Persona de Mediana Edad , Mamografía/métodos , Adulto , Anciano , Carcinoma Ductal de Mama/diagnóstico por imagen , Radiómica
12.
Synth Syst Biotechnol ; 9(1): 99-107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38288444

RESUMEN

Creatine is a naturally occurring derivative of an amino acid commonly utilized in functional foods and pharmaceuticals. Nevertheless, the current industrial synthesis of creatine relies on chemical processes, which may hinder its utilization in certain applications. Therefore, a biological approach was devised that employs whole-cell biocatalysis in the bacterium Corynebacterium glutamicum, which is considered safe for use in food production, to produce safe-for-consumption creatine. The objective of this study was to identify a guanidinoacetate N-methyltransferase (GAMT) with superior catalytic activity for creatine production. Through employing whole-cell biocatalysis, a gamt gene from Mus caroli (Mcgamt) was cloned and expressed in C. glutamicum ATCC 13032, resulting in a creatine titer of 3.37 g/L. Additionally, the study employed a promoter screening strategy that utilized nine native strong promoters in C. glutamicum to enhance the expression level of GAMT. The highest titer was achieved using the P1676 promoter, reaching 4.14 g/L. The conditions of whole-cell biocatalysis were further optimized, resulting in a creatine titer of 5.42 g/L. This is the first report of successful secretory creatine expression in C. glutamicum, which provides a safer and eco-friendly approach for the industrial production of creatine.

13.
Int J Nanomedicine ; 19: 759-785, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38283198

RESUMEN

Surgical removal together with chemotherapy and radiotherapy has used to be the pillars of cancer treatment. Although these traditional methods are still considered as the first-line or standard treatments, non-operative situation, systemic toxicity or resistance severely weakened the therapeutic effect. More recently, synthetic biological nanocarriers elicited substantial interest and exhibited promising potential for combating cancer. In particular, bacteria and their derivatives are omnipotent to realize intrinsic tumor targeting and inhibit tumor growth with anti-cancer agents secreted and immune response. They are frequently employed in synergistic bacteria-mediated anticancer treatments to strengthen the effectiveness of anti-cancer treatment. In this review, we elaborate on the development, mechanism and advantage of bacterial therapy against cancer and then systematically introduce the bacteria-based nanoprobes against cancer and the recent achievements in synergistic treatment strategies and clinical trials. We also discuss the advantages as well as the limitations of these bacteria-based nanoprobes, especially the questions that hinder their application in human, exhibiting this novel anti-cancer endeavor comprehensively.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Bacterias
14.
Digit Health ; 9: 20552076231207587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868154

RESUMEN

Objective: In the aging world, the depression of older adults has aroused great concern. It brings detrimental side effects to old adults and the sustainability of society. The information and communication technologies have reshaped how people live among which the Internet has gained much popularity in the senior community. This study aims to explore the association between Internet use and depression in older adults. Methods: This study applied a representative national dataset (China Longitudinal Aging Social Survey, CLASS 2018) to examine by conducting regression analysis. Inspired by the social capital theory, we further examined the mediating role of general social networks (as a general concept) and specific networks (family and friend networks) in reducing depression. All calculations and analyses were conducted by STATA. Results: (a) Internet use significantly reduces depressive symptoms among Chinese older adults; (b) internet use enhances social network support for Chinese older adults; and (c) social networks in general and family networks and friend networks in specific all play a mediating role between internet use and depression symptoms. Conclusion: This work proved that internet use could reduce depression levels in older adults in China, and social networks, including family networks and friend networks, have a mediation role in the relationship between internet use and depression in older adults in China. Combined with the Chinese social context, we explained that the existence of an empty-nest elderly community in Chinese society and the emphasis on kinship in Chinese tradition may be the reasons. Based on the main findings, tailor-made suggestions for addressing depression issues among older adults were discussed.

15.
Cell Rep Med ; 4(10): 101214, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37794587

RESUMEN

Multiple myeloma (MM) growth is supported by an immune-tolerant bone marrow microenvironment. Here, we find that loss of Never in mitosis gene A (NIMA)-related kinase 2 (NEK2) in tumor microenvironmental cells is associated with MM growth suppression. The absence of NEK2 leads to both fewer tumor-associated macrophages (TAMs) and inhibitory T cells. NEK2 expression in myeloid progenitor cells promotes the generation of functional TAMs when stimulated with MM conditional medium. Clinically, high NEK2 expression in MM cells is associated with increased CD8+ T effector memory cells, while low NEK2 is associated with an IFN-γ gene signature and activated T cell response. Inhibition of NEK2 upregulates PD-L1 expression in MM cells and myeloid cells. In a mouse model, the combination of NEK2 inhibitor INH154 with PD-L1 blockade effectively eliminates MM cells and prolongs survival. Our results provide strong evidence that NEK2 inhibition may overcome tumor immune escape and support its further clinical development.


Asunto(s)
Mieloma Múltiple , Ratones , Animales , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Antígeno B7-H1/genética , Linfocitos T/metabolismo , Línea Celular Tumoral , Células Progenitoras Mieloides/metabolismo , Células Progenitoras Mieloides/patología , Microambiente Tumoral
16.
Biomed Pharmacother ; 167: 115431, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37688988

RESUMEN

Diabetic foot ulcers, a common complication of diabetes mellitus, significantly impact patients' quality of life and impose a substantial economic burden on healthcare systems. However, the currently used treatments are associated with various challenges and the traditionally used dressings lack functional efficacy. Oxidative stress is believed to play a vital role in diabetic wound healing. Therefore, nicotinamide mononucleotide (NMN), which is known for its antioxidant properties, offers the potential to accelerate the wound-healing process. Here, a thermosensitive composite hydrogel was synthesized by mixing Pluronic F127 and Pluronic F68 with an antibacterial component chitosan. The hydrogel exhibited favorable properties including a stable structure, appropriate solid-liquid phase change, loose porosity, slow-release, antibacterial properties, and biocompatibility. In vitro experiments demonstrated that the NMN-loaded temperature-sensitive hydrogel effectively promoted cell proliferation, migration, and angiogenesis and exhibited antioxidant activity. In diabetic thickness skin defect models, NMN-loaded temperature-sensitive hydrogel treatment significantly accelerated wound healing by promoting collagen synthesis, angiogenesis, and increased expression of vascular endothelial growth factor and transforming growth factor- ß1. In summary, NMN-loaded temperature-sensitive hydrogel can promote diabetic wound healing in a simple, economical, effective, and safe manner, with potential application in treating diabetic wounds.

17.
Int J Mol Sci ; 24(16)2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37628826

RESUMEN

Reversing HIV-1 latency promotes the killing of infected cells and is essential for cure strategies. However, current latency-reversing agents (LRAs) are not entirely effective and safe in activating latent viruses in patients. In this study, we investigated whether Scopoletin (6-Methoxy-7-hydroxycoumarin), an important coumarin phytoalexin found in plants with multiple pharmacological activities, can reactivate HIV-1 latency and elucidated its underlying mechanism. Using the Jurkat T cell model of HIV-1 latency, we found that Scopoletin can reactivate latent HIV-1 replication with a similar potency to Prostratin and did so in a dose- and time-dependent manner. Moreover, we provide evidence indicating that Scopoletin-induced HIV-1 reactivation involves the nuclear factor kappa B (NF-κB) signaling pathway. Importantly, Scopoletin did not have a stimulatory effect on T lymphocyte receptors or HIV-1 receptors. In conclusion, our study suggests that Scopoletin has the potential to reactivate latent HIV-1 without causing global T-cell activation, making it a promising treatment option for anti-HIV-1 latency strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , FN-kappa B , Escopoletina/farmacología , Latencia del Virus
18.
Drug Des Devel Ther ; 17: 2537-2547, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37645625

RESUMEN

Objective: To investigate the mechanism of minoxidil in treating androgenetic alopecia (AGA). Methods: The mechanism of action of minoxidil on AGA was first systematically investigated from the viewpoint of network pharmacology, including minoxidil-AGA target prediction, protein-protein interaction (PPI) network analysis, molecular docking and enrichment analysis of targets related to minoxidil and AGA, and dermal papilla cell assays to confirm the viability of prediction. Results: The combined analysis revealed that minoxidil treatment of AGA not only acts on androgenic receptors (AR) but also on 2 new targets, steroid 17-alpha-hydroxylase/17,20 lyase (CYP17A1) and aromatase (CYP19A1). The biological processes linked to these targets were concentrated on several pathways, including enzymes and hormones. Further experiments have revealed that minoxidil suppresses the expression of AR and CYP17A1, boosts the activity of CYP19A1, decreases the formation and binding of dihydrotestosterone, and enhances the production of estradiol. Through these changes, minoxidil acts as a treatment for AGA. Conclusion: Minoxidil may act by altering hormonal and enzymatic pathways. Our study finds two new targets (CYP17A1, CYP19A1) of minoxidil and demonstrates that minoxidil inhibits AR. These targets may provide new ideas for drug research.


Asunto(s)
Alopecia , Minoxidil , Humanos , Minoxidil/farmacología , Minoxidil/uso terapéutico , Simulación del Acoplamiento Molecular , Alopecia/tratamiento farmacológico , Suplementos Dietéticos , Estradiol
19.
bioRxiv ; 2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37645985

RESUMEN

The recruitment of peripheral blood neutrophils at sites of inflammation involves a multistep cascade, starting with E- and P-selectin expressed on the inflamed vascular endothelium binding sialofucosylated glycans on leukocytes. As the glycoconjugate biosynthesis pathways in different cells are distinct, the precise carbohydrate ligands of selectins varies both across species, and between different immune cell populations in a given species. To study this aspect in human neutrophils, we developed a protocol to perform CRISPR/Cas9 gene-editing on CD34+ hHSCs (human hematopoietic stem/progenitor cells) as they are differentiated towards neutrophil lineage. This protocol initially uses a cocktail of SCF (stem-cell factor), IL-3 (interleukin-3) and FLT-3L (FMS-like tyrosine kinase 3 ligand) to expand the stem/progenitor cells followed by directed differentiation to neutrophils using G-CSF (granulocyte colony-stimulating factor). Microfluidics based assays were performed on a confocal microscope platform to characterize the rolling phenotype of each edited cell type in mixed populations. These studies demonstrated that CD44, but not CD43, is a major E-selectin ligand on human neutrophils. The loss of function results were validated by developing sialofucosylated recombinant CD44. This glycosylated protein supported both robust E-selectin binding in a cell-free assay, and it competitively blocked neutrophil adhesion to E-selectin on inflamed endothelial cells. Together, the study establishes important methods to study human neutrophil biology and determines that sialoflucosylated-CD44 is a physiological human E-selectin ligand.

20.
Environ Res ; 237(Pt 1): 116881, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37595829

RESUMEN

Agricultural land is the most basic input factor for agricultural production and an essential component of terrestrial ecosystems, which plays a vital role in achieving carbon neutrality. Giving full play to the carbon-neutral contribution of agricultural land is a crucial part of China's economic transformation and green development. It incorporates carbon and pollution emissions from agricultural land use into the unexpected outputs of the Green and Low-carbon Utilization Efficiency of Agricultural Land (GLUEAL) evaluation system. The study utilized several advanced analytical tools, including the super-efficient Slacks-Based Measure (SBM) model, Exploratory Spatial-Temporal Data Analysis (ESTDA) method, Geodetector, and Geographically and Temporally Weighted Regression (GTWR) model. The objective was to examine the spatial-temporal evolution of GLUEAL and identify the factors that influenced it in all 31 provinces of China from 2005 to 2020. The results show that: (1) The overall spatial-temporal evolution of GLUEAL showed an increasing trend, but the disparity between provinces and regions became wider. (2) Most provinces have not yet made significant spatial and temporal jumps. They have high spatial cohesion with specific "path-dependent" characteristics. (3) The Geodetector results reveal that the Number of Rural Labor Force with Higher Education (NRLFHE) and Technology Support for Agriculture (TSA) have insufficient explanatory power on average for GLUEAL. Agricultural Economic Development Level (AEDL), Urbanization Level (UL), Multiple Crop Index (MCI), Planting Structure (PS), Degree of Crop Damage (DCD), Financial support for agriculture (FSA), and Agricultural mechanization level (AML) had stronger explanatory power on average for GLUEAL and were important factors influencing GLUEAL levels. (4) The average influence of AEDL, UL, FSA, and AML on GLUEAL changed from negative to positive. The average influence of MCI and DCD on GLUEAL was negative, and the average influence of PS on GLUEAL changed from positive to negative. This study provides a comprehensive description of the spatial and temporal evolution of GLUEAL in China. It reveals the key factors influencing GLUEAL and analyzes their spatial variations and impact patterns. These findings offer robust evidence for government policymakers to formulate policy measures for sustainable agricultural development and optimized resource allocation, promoting the transformation of agricultural land towards green and low-carbon practices and advancing the achievement of sustainable development goals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...