Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(28): 33774-33783, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37424086

RESUMEN

It is highly desirable to construct a single-multimodal sensor that could synchronously perceive multiple stimuli without interference. Here, we propose an adhesive multifunctional chromotropic electronic skin (MCES) that can respond to and distinguish three different stimuli of stain, temperature, and pressure within the two-terminal sensing unit. The mutually discriminating "three-in-one" device converts strain into capacitance and pressure into voltage signals for a tactile stimulus response and produces visual color changes against temperature. In this MCES system, the interdigital capacitor sensor shows high linearity (R2 = 0.998), and temperature sensing is realized via reversible multicolor switching bioinspired by the chameleon, showing attractive potential in visualization interaction. Notably, the energy-harvesting triboelectric nanogenerator in MCES can not only detect pressure incentive but also identify objective material species. Looking forward, these findings promise for multimodal sensor technology with reduced complexity and production costs that are highly anticipated in soft robotics, prosthetics, and human-machine interaction applications.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Temperatura , Piel , Tacto , Sensación Térmica
2.
Food Chem ; 385: 132651, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35287109

RESUMEN

Electronic nose (E-nose) and hyperspectral image (HSI) were combined to evaluate mutton total volatile basic nitrogen (TVB-N), which is a comprehensive index of freshness. The response values of 10 E-nose sensors were collected, and seven responsive sensors were screened via histogram statistics. Reflectance spectra and image features were extracted from HSI images, and the effective variables were selected through random frog and Pearson correlation analyses. With multi-source features, an input-modified convolution neural network (IMCNN) was constructed to predict TVB-N. The seven E-nose sensors, spectra of effective wavelengths (EWs), and five important image features were combined with IMCNN to achieve the best result, with the root mean square error, correlation coefficient, and ratio of performance deviation of the prediction set of 3.039 mg/100 g, 0.920, and 3.59, respectively. Hence, the proposed method furnishes an approach to accurately analyze mutton freshness and provide a technical basis for investigation of other meat qualities.


Asunto(s)
Nariz Electrónica , Carne Roja , Imágenes Hiperespectrales , Carne/análisis , Redes Neurales de la Computación , Nitrógeno/análisis , Carne Roja/análisis
3.
Artículo en Inglés | MEDLINE | ID: mdl-28783586

RESUMEN

Conventional Surface-Enhanced Raman Spectroscopy (SERS) for fast detection of drugs in urine on the portable Raman spectrometer remains challenges because of low sensitivity and unreliable Raman signal, and spectra process with manual intervention. Here, we develop a novel detection method of drugs in urine using chemometric methods and dynamic SERS (D-SERS) with mPEG-SH coated gold nanorods (GNRs). D-SERS combined with the uniform GNRs can obtain giant enhancement, and the signal is also of high reproducibility. On the basis of the above advantages, we obtained the spectra of urine, urine with methamphetamine (MAMP), urine with 3, 4-Methylenedioxy Methamphetamine (MDMA) using D-SERS. Simultaneously, some chemometric methods were introduced for the intelligent and automatic analysis of spectra. Firstly, the spectra at the critical state were selected through using K-means. Then, the spectra were proposed by random forest (RF) with feature selection and principal component analysis (PCA) to develop the recognition model. And the identification accuracy of model were 100%, 98.7% and 96.7%, respectively. To validate the effect in practical issue further, the drug abusers'urine samples with 0.4, 3, 30ppm MAMP were detected using D-SERS and identified by the classification model. The high recognition accuracy of >92.0% can meet the demand of practical application. Additionally, the parameter optimization of RF classification model was simple. Compared with the general laboratory method, the detection process of urine's spectra using D-SERS only need 2 mins and 2µL samples volume, and the identification of spectra based on chemometric methods can be finish in seconds. It is verified that the proposed approach can provide the accurate, convenient and rapid detection of drugs in urine.


Asunto(s)
Metanfetamina/orina , N-Metil-3,4-metilenodioxianfetamina/orina , Espectrometría Raman/métodos , Humanos , Análisis de Componente Principal , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja Corta , Trastornos Relacionados con Sustancias/orina , Máquina de Vectores de Soporte
4.
Guang Pu Xue Yu Guang Pu Fen Xi ; 33(9): 2438-42, 2013 Sep.
Artículo en Chino | MEDLINE | ID: mdl-24369648

RESUMEN

In the present paper, the surface-enhanced Raman spectroscopy (SERS) was used to build the model for the quantitative detection of ethyl paraoxon by the principal component analysis and segmented linear regression (PCA-SLR). Firstly, SERS in 820-1630 cm(-1) of ethyl paraoxon solution were measured and the spectra in 820-1630 cm(-1)(complete range) and 845-875 cm(-1) (characteristic range) of ethyl paraoxon solution were preprocessed by standard normal transformation (SNV), multiplicative scatter correction (MSC), the absolute values of first derivative and the second derivative respectively. Additionally, the number of dimensions of the spectra was reduced by PCA. Finally, the models were established by SLR It was found that the model developed with MSC preprocessed spectroscopy of characteristic range performed best (RMSEP: 0.33) by comparing the predictive accuracy of the different models. The result could meet with the needs in the quantitative detection of ethyl paraoxon.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...