Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Materials (Basel) ; 17(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930240

RESUMEN

In order to further optimize the performance of PMMA (Polymethyl Methacrylate) repair mortar. In this paper, fly ash, talcum powder and wollastonite powder are used as fillers to modify the PMMA repair mortar. The effects of these three fillers on the working performance, mechanical performance and durability of PMMA repair mortar were explored. The study shows that the three fillers have good effect on the bond strength of the repair mortar, in which the fly ash has the best effect on the mechanical performance. The mechanical properties of PMMA repair mortar were best when the amount of fly ash was 60 phr (parts per hundred, representing the amount of the material added per hundred parts of PMMA). At this time, the 28 d compressive strength was 71.26 MPa and the 28 d flexural strength was 28.09 MPa, which increased by 13.31% and 15.33%, respectively. Wollastonite powder had the least negative effect on the setting time of the PMMA repair mortar. When the dosage of wollastonite powder was increased to 100 phr, the setting time was only extended from 65 min to 94 min. When the talc dosage was 60 phr, the best improvement in salt freezing resistance was achieved. After 100 cycles of salt freezing, the mass loss rate and strength loss rate decreased to 0.159% and 4.97%, respectively, which were 75.1% and 37.7% higher than that of the control group. The addition of all three fillers reduced the porosity and the proportion of harmful pores in the mortar. This study contributes to a comprehensive understanding how different types of fillers affect PMMA repair mortars, and it also provides theoretical support for the further development of low-temperature rapid repair mortars.

2.
Mol Pain ; 20: 17448069241256466, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716504

RESUMEN

Background: Recent studies have shown that peripheral nerve regeneration process is closely related to neuropathic pain. Toll-like receptor 4 (TLR4) signaling was involved in different types of pain and nerve regeneration. TLR4 induced the recruitment of myeloid differentiation factor-88 adaptor protein (MyD88) and NF-κB-depended transcriptional process in sensory neurons and glial cells, which produced multiple cytokines and promoted the induction and persistence of pain. Our study aimed to investigate procyanidins's effect on pain and nerve regeneration via TLR4-Myd88 signaling. Methods: Spinal nerve ligation (SNL) model was established to measure the analgesic effect of procyanidins. Anatomical measurement of peripheral nerve regeneration was measured by microscopy and growth associated protein 43 (GAP43) staining. Western blotting and/or immunofluorescent staining were utilized to detect TLR4, myeloid differentiation factor-88 adaptor protein (MyD88), ionized calcium-binding adapter molecule 1 (IBA1) and nuclear factor kappa-B-p65 (NF-κB-p65) expression, as well as the activation of astrocyte and microglia. The antagonist of TLR4 (LPS-RS-Ultra, LRU) were intrathecally administrated to assess the behavioral effects of blocking TLR4 signaling on pain and nerve regeneration. Result: Procyanidins reduced mechanical allodynia, thermal hyperalgesia and significantly suppressed the number of nerve fibers regenerated and the degree of myelination in SNL model. Compared with sham group, TLR4, MyD88, IBA1 and phosphorylation of NF-κB-p65 were upregulated in SNL rats which were reversed by procyanidins administration. Additionally, procyanidins also suppressed activation of spinal astrocytes and glial cells. Conclusion: Suppression of TLR4-MyD88 signaling contributes to the alleviation of neuropathic pain and reduction of nerve regeneration by procyanidins.


Asunto(s)
Factor 88 de Diferenciación Mieloide , Regeneración Nerviosa , Neuralgia , Proantocianidinas , Ratas Sprague-Dawley , Transducción de Señal , Receptor Toll-Like 4 , Animales , Proantocianidinas/farmacología , Receptor Toll-Like 4/metabolismo , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Masculino , Extracto de Semillas de Uva/farmacología , Ratas , Microglía/efectos de los fármacos , Microglía/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Nervios Espinales/efectos de los fármacos
3.
Materials (Basel) ; 17(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612084

RESUMEN

With the fast development of the cold chain transportation industry, the traditional refrigeration method results in significant energy consumption. To address the national call for energy saving and emission reduction, the search for a new type of energy storage material has already become a future development trend. According to the national standard GB/T28577 for the classification and basic requirements of cold chain logistics, the temperature in frozen logistics is typically below -18 °C. In this study, n-undecane with a phase change temperature of -26 °C is chosen as the core material of microcapsules. Poly(methyl methacrylate) is applied as the shell material, with n-undecane microcapsules being prepared through suspension polymerization for phase change cold storage materials (MEPCM). Using characterization techniques including SEM, DSC, FTIR, and laser particle size analysis, the effects of three types of emulsifiers (SMA, Tween-80, Tween-80/span-80 (70/30)), SMA emulsifier dosage, core-shell ratio, and emulsification rate on the thermal performance and micro-surface morphology of n-undecane/PMMA microcapsules were studied. The results indicate that when comparing SMA, Tween-80, and Tween-80/span-80 (70/30) as emulsifiers, the dodecane/PMMA microcapsules prepared with SMA emulsifier exhibit superior thermal performance and micro-surface morphology, possessing a complete core-shell structure. The optimal microstructure and the highest enthalpy of phase change, measuring 120.3 kJ/kg, are achieved when SMA is used as the emulsifier with a quantity of 7%, a core-to-wall ratio of 2.5:1, and an emulsification speed of 2000 rpm. After 200 hot and cold cycles, the enthalpy of phase change decreased by only 18.6 kJ/kg, indicating the MEPCM thermal performance and cycle life. In addition, these optimized microcapsules exhibit favorable microstructure, uniform particle size, and efficient energy storage, making them an excellent choice for the refrigeration and freezing sectors.

4.
J Environ Manage ; 357: 120773, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38555845

RESUMEN

Extraction of coastline from optical remote sensing images is of paramount importance for coastal zone management, erosion monitoring, and intelligent ocean construction. However, nearshore marine environment complexity presents a challenge when capturing small-scale and detailed information regarding coastlines. Furthermore, the presence of numerous tidal flats, suspended sediments, and coastal biological communities exacerbates the reduction in segmentation accuracy, which is particularly noticeable in medium-high-resolution remote sensing image segmentation tasks. Most previous related studies, based primarily on convolutional neural networks (CNNs) or traditional feature extraction methods, faced challenges in detailed pixel-level refinement and lacked comprehensive understanding of the studied images. Therefore, we proposed a new U-shaped deep learning model (STIRUnet) that combines the excellent global modeling ability of SwinTransformer with an improved CNN using an inverted residual module. The proposed method has the capability of global supervised feature learning and layer-by-layer feature extraction, and we conducted sea-land segmentation experiments using GF-HNCD and BSD remote sensing image datasets to validate the performance of the proposed model. The results indicate the following: 1) suspended sediments and coastal biological communities are major contributors to coastline blurring, and 2) the recovery of minute features (e.g., narrow watercourses and microscale artificial structures) effectively enhances edge details and leads to more realistic segmentation outcomes. The findings of this study are highly important in relation of accurate extraction of sea-land information in complex marine environments, and they offer novel insights regarding mixed-pixel identification.


Asunto(s)
Biota , Redes Neurales de la Computación , Telemetría , Procesamiento de Imagen Asistido por Computador
5.
Comput Struct Biotechnol J ; 23: 929-941, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38375529

RESUMEN

Cancer immunotherapy has shown to be a promising method in treating hepatocellular carcinoma (HCC), but suboptimal responses in patients are attributed to cellular and molecular heterogeneity. Iron metabolism-related genes (IRGs) are important in maintaining immune system homeostasis and have the potential to help develop new strategies for HCC treatment. Herein, we constructed and validated the iron-metabolism gene prognostic index (IPX) using univariate Cox proportional hazards regression and LASSO Cox regression analysis, successfully categorizing HCC patients into two groups with distinct survival risks. Then, we performed single-sample gene set enrichment analysis, weighted correlation network analysis, gene ontology enrichment analysis, cellular lineage analysis, and SCENIC analysis to reveal the key determinants underlying the ability of this model based on bulk and single-cell transcriptomic data. We identified several driver transcription factors specifically activated in specific malignant cell sub-populations to contribute to the adverse survival outcomes in the IPX-high subgroup. Within the tumor microenvironment (TME), T cells displayed significant diversity in their cellular characteristics and experienced changes in their developmental paths within distinct clusters identified by IPX. Interestingly, the proportion of Treg cells was increased in the high-risk group compared with the low-risk group. These results suggest that iron-metabolism could be involved in reshaping the TME, thereby disrupting the cell cycle of immune cells. This study utilized IRGs to construct a novel and reliable model, which can be used to assess the prognosis of patients with HCC and further clarify the molecular mechanisms of IRGs in HCC at single-cell resolution.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38347362

RESUMEN

Ecosystems depend on biodiversity; therefore, protecting biodiversity is beneficial for the development of ecosystems. Butterflies are indicator species that respond quickly to environmental changes and reflect environmental conditions. Butterfly diversity is a crucial evaluation indicator of habitat quality in green spaces. We used CiteSpace and Bibliometrix to conduct a bibliometric analysis of research relating to butterfly diversity in green spaces. Based on 538 papers published from 2002-2022, we systematically reviewed the status, frontiers, and hotspots for research on butterfly diversity in green spaces. Our results showed that: (1) Research on butterfly diversity in green spaces has consistently demonstrated an upward trend between 2002-2022. Studies on this subject have garnered attention from researchers worldwide, with notable interest and contributions from scholars in the United States. (2) Early studies focused on butterfly habitat preferences and extinction concerns, and later articles appeared on the influence of external environmental factors (land use, climate change, plants, etc.). (3) Three main research topics received much attention between 2002 and 2022: biodiversity conservation, butterfly habitats, and the relationship between butterfly diversity and its influencing factors. (4) The relationship between green spaces and butterfly diversity (landscape features, vegetation features, and human activities) was discussed; these factors on butterfly communities should be considered in the planning and constructing of future green spaces. (5) Two significant future directions have been identified: more research on the impact of external factors and a need for more technical integration with the big data field. Future research on butterfly diversity in green spaces should adopt a more multi-scale, multi-disciplinary approach and aim to enhance the practicality and guidance of research findings.

7.
Front Physiol ; 15: 1302610, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370012

RESUMEN

Background: Jumping ability is one of the necessary qualities for athletes. Previous studies have shown that plyometric training and complex training including plyometrics can improve athletes' jumping ability. With the emergence of various types of complex training, there is uncertainty about which training method has the best effect. This study conducted a meta-analysis of randomized controlled trials of plyometric-related training on athletes' jumping ability, to provide some reference for coaches to design training plans. Methods: We systematically searched 3 databases (PubMed, Web of Science, and Scopus) up to July 2023 to identify randomized controlled trials investigating plyometrics related training in athletes. The two researchers conducted literature screening, extraction and quality assessment independently. We performed a network meta-analysis using Stata 16. Results: We analyzed 83 studies and found that complex training, which includes high-intensity intervals and plyometric exercises, was the most effective method for improving squat jumps (SURCA = 96%). In the case of countermovement jumps a combination of electrostimulation and plyometric training yielded the best results (SURCA = 97.6%). Weightlifting training proved to be the most effective for the standing long jump (SURCA = 81.4%), while strength training was found to be the most effective for the five bounces test (SURCA = 87.3%). Conclusion: Our current study shows that complex training performs more efficient overall in plyometric-related training. However, there are different individual differences in the effects of different training on different indicators (e.g., CMJ, SJ, SLJ, 5BT) of athletes. Therefore, in order to ensure that the most appropriate training is selected, it is crucial to accurately assess the physical condition of each athlete before implementation. Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/, Registration and protocol CRD42023456402.

8.
Protein Cell ; 15(1): 6-20, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37233789

RESUMEN

Originating but free from chromosomal DNA, extrachromosomal circular DNAs (eccDNAs) are organized in circular form and have long been found in unicellular and multicellular eukaryotes. Their biogenesis and function are poorly understood as they are characterized by sequence homology with linear DNA, for which few detection methods are available. Recent advances in high-throughput sequencing technologies have revealed that eccDNAs play crucial roles in tumor formation, evolution, and drug resistance as well as aging, genomic diversity, and other biological processes, bringing it back to the research hotspot. Several mechanisms of eccDNA formation have been proposed, including the breakage-fusion-bridge (BFB) and translocation-deletion-amplification models. Gynecologic tumors and disorders of embryonic and fetal development are major threats to human reproductive health. The roles of eccDNAs in these pathological processes have been partially elucidated since the first discovery of eccDNA in pig sperm and the double minutes in ovarian cancer ascites. The present review summarized the research history, biogenesis, and currently available detection and analytical methods for eccDNAs and clarified their functions in gynecologic tumors and reproduction. We also proposed the application of eccDNAs as drug targets and liquid biopsy markers for prenatal diagnosis and the early detection, prognosis, and treatment of gynecologic tumors. This review lays theoretical foundations for future investigations into the complex regulatory networks of eccDNAs in vital physiological and pathological processes.


Asunto(s)
ADN Circular , Neoplasias de los Genitales Femeninos , Masculino , Femenino , Animales , Humanos , Porcinos , ADN Circular/genética , Semen , ADN , Reproducción
10.
Neurol Sci ; 45(1): 155-169, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578631

RESUMEN

OBJECTIVE: Our study aimed to explore the functional connectivity alterations between cortical nodes of resting-state networks in Parkinson's disease (PD) patients with wearing-off (WO) at different levels. METHODS: Resting-state functional magnetic resonance imaging was performed on 36 PD patients without wearing-off (PD-nWO), 30 PD patients with wearing-off (PD-WO), and 35 healthy controls (HCs) to extract functional networks. Integrity, network, and edge levels were calculated for comparison between groups. UPDRS-III, MMSE, MOCA, HAMA, and HAMD scores were collected for further regression analysis. RESULTS: We observed significantly reduced connectivity strength in the dorsal attention network and limbic network in the PD-WO group compared with the HC group. The PD-WO group showed a decreased degree of functional connectivity at 12 nodes, including the bilateral orbital part of the superior frontal gyrus, right olfactory cortex, left medial orbital part of the superior frontal gyrus, bilateral gyrus rectus, right parahippocampal gyrus, right thalamus, left Heschl's gyrus, right superior temporal gyrus part of the temporal pole, left middle temporal gyrus part of the temporal pole, and right inferior temporal gyrus. Furthermore, the PD-WO group showed a significantly lower degree of functional connectivity in the left orbital part of the superior frontal gyrus and right gyrus rectus than the PD-nWO group. Internetwork analysis indicated reduced functional connectivity in five pairs of resting-state networks. CONCLUSION: Our results demonstrated altered intra- and internetwork connections in PD patients with WO. These findings will facilitate a better understanding of the distinction between the network changes in PD pathophysiology.


Asunto(s)
Mapeo Encefálico , Enfermedad de Parkinson , Humanos , Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Enfermedad de Parkinson/diagnóstico por imagen , Corteza Prefrontal , Lóbulo Temporal
11.
Int J Biol Macromol ; 258(Pt 1): 128827, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38134989

RESUMEN

We report a facile synthesis for lignin/titanium dioxide (TiO2) nanoparticles (LT NPs) at room temperature by confining assembly of lignin macromolecules. The LT NPs had a uniform nanosize distribution (average diameter âˆ¼ 68 nm) and were directly employed as multifunctional nanofillers to reinforce a waterborne polyurethane wood coating (WBC). X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy revealed the mechanism by which formed TiO2 confined lignin assembly. The LT NPs considerably increased the tensile strength of a WBC film from 16.3 MPa to 28.1 MPa. The WBC-LT NPs exhibited excellent ultraviolet (UV) A and UVB blocking performances of 87 % and 98 %, respectively, while maintaining 94 % transmittance in the visible region. Incorporating LT NPs into the WBC enhanced the coating performance (the hardness, adhesion, and abrasion resistance) on wood substrates. A quantitative color and texture analysis revealed that the LT NPs increased the decorativeness of actual wooden products. After nearly 1800 h of UV irradiation, wood coated with the WBC-LT NPs exhibited good color stability, where the original color remained unchanged or even became brighter. In this study, value-added valorization of lignin is enabled by using organic-inorganic nanofillers and insights are gained into developing multifunctional WBCs.


Asunto(s)
Lignina , Nanopartículas , Lignina/química , Poliuretanos/química , Madera , Nanopartículas/química , Titanio/química
12.
Adv Sci (Weinh) ; 11(10): e2303341, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38145352

RESUMEN

High-fat diet (HFD)-induced obesity is a crucial risk factor for metabolic syndrome, mainly due to adipose tissue dysfunctions associated with it. However, the underlying mechanism remains unclear. This study has used genetic screening to identify an obesity-associated human lncRNA LINK-A as a critical molecule bridging the metabolic microenvironment and energy expenditure in vivo by establishing the HFD-induced obesity knock-in (KI) mouse model. Mechanistically, HFD LINK-A KI mice induce the infiltration of inflammatory factors, including IL-1ß and CXCL16, through the LINK-A/HB-EGF/HIF1α feedback loop axis in a self-amplified manner, thereby promoting the adipose tissue microenvironment remodeling and adaptive thermogenesis disorder, ultimately leading to obesity and insulin resistance. Notably, LINK-A expression is positively correlated with inflammatory factor expression in individuals who are overweight. Of note, targeting LINK-A via nucleic acid drug antisense oligonucleotides (ASO) attenuate HFD-induced obesity and metabolic syndrome, pointing out LINK-A as a valuable and effective therapeutic target for treating HFD-induced obesity. Briefly, the results reveale the roles of lncRNAs (such as LINK-A) in remodeling tissue inflammatory microenvironments to promote HFD-induced obesity.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , ARN Largo no Codificante , Humanos , Animales , Ratones , ARN Largo no Codificante/metabolismo , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Obesidad/metabolismo , Tejido Adiposo/metabolismo , Dieta Alta en Grasa
13.
Carbohydr Polym ; 322: 121347, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839849

RESUMEN

The highly efficient extraction of cellulose from lignocellulose with an excellent yield of 95.2 % and purity of 96.7 % was demonstrated using acid-catalyzed fractionation with aqueous butanediol. This cellulose was subsequently transformed into cellulose nanofibers (CNFs) and cellulose nanocrystals (CNCs) with specific dimensions and surface functional groups through various chemomechanical treatments. The average diameters of CNFs and CNCs produced by sulfuric acid hydrolysis-ultrasonication and deep eutectic solvent treatment-ultrasonication (DES-CNCs) were 29.7, 21.9 and 17.3 nm, respectively. The DES-CNCs were obtained in a good yield of 71 ± 1.27 wt% and exhibited a high zeta potential of -33.5 ± 2.51 mV following posthydrolysis and esterification during the DES treatment. These CNFs and CNCs were used as nanofillers in a waterborne wood coating (WWC), which significantly improved its dynamic viscosity and storage modulus. The addition of these materials also enhanced the mechanical strength of the WWC but had little effect on transmittance. Glossiness, hardness, abrasion resistance and adhesion strength were evaluated, and the DES-CNCs provided the greatest improvements at a low concentration. A plausible reinforcement mechanism was presented. This work provided an efficient cellulose extraction method and detailed structure elucidation of the nanocellulose together with suggestions for value-added applications of cellulosic nanofillers for reinforcing WWC.

14.
BMC Infect Dis ; 23(1): 589, 2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37679704

RESUMEN

BACKGROUND: During endotracheal intubation, extubation, tracheotomy, and tracheotomy tube replacement, the splashed airway secretions of patients will increase the risk of transmission of SARS-CoV-2 and many other potential viral and bacterial diseases, such as influenza virus, adenovirus, respiratory syncytial virus, rhinovirus, Middle East respiratory coronavirus syndrome (MERS-CoV), Streptococcus pneumoniae, and Mycobacterium tuberculosis. Therefore, it is necessary to establish a barrier between patients and medical workers to reduce the risk of operators' infection with potentially pathogenic microorganisms. METHODS: We designed a "safety cap" that can be connected to the opening of an endotracheal tube or tracheotomy tube to reduce the diffusion area of respiratory secretions during the process of endotracheal intubation, extubation and tracheotomy tube replace, so as to reduce the infection risk of medical workers. RESULTS: Through a series of hydrodynamic simulation analysis and experiments, we demonstrated that the use of "safety cap" can substantially limit the spatter of airway secretions, so as to improve the hospital sanitation. CONCLUSION: The "safety cap" can effectively limit the dissemination of patients' respiratory secretions, thus reducing the risk of potential diseases transmission and may have certain application prospects.


Asunto(s)
COVID-19 , Humanos , COVID-19/prevención & control , SARS-CoV-2 , Saneamiento , Intubación Intratraqueal , Hospitales
15.
Brain Imaging Behav ; 17(6): 725-737, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37735325

RESUMEN

Our study aimed to investigate the grey matter (GM) changes using voxel-based morphometry (VBM) in Parkinson's disease (PD) patients with wearing-off (WO). 3D-T1-weighted imaging was performed on 48 PD patients without wearing-off (PD-nWO), 39 PD patients with wearing-off (PD-WO) and 47 age and sex-matched healthy controls (HCs). 3D structural images were analyzed by VBM procedure with Statistical Parametric Mapping (SPM12) to detect grey matter volume. Widespread areas of grey matter changes were found in patients among three groups (in bilateral frontal, temporal lobes, lingual gyrus, inferior occipital gyrus, right precuneus, right superior parietal gyrus and right cerebellum). Grey matter reductions were found in frontal lobe (right middle frontal gyrus, superior frontal gyrus and precentral gyrus), right parietal lobe (precuneus, superior parietal gyrus, postcentral gyrus), right temporal lobe (superior temporal gyrus, middle temporal gyrus), bilateral lingual gyrus and inferior occipital gyrus in PD-WO group compared with the PD-nWO group. Our results suggesting that wearing-off may be associated with grey matter atrophy in the cortical areas. These findings may aid in a better understanding of the brain degeneration process in PD with wearing-off.


Asunto(s)
Sustancia Gris , Enfermedad de Parkinson , Humanos , Sustancia Gris/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/complicaciones , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal
16.
J Plant Physiol ; 287: 154062, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37540924

RESUMEN

Okra (Abelmoschus esculentus L.) is a tropical crop species, and its growth and development are severely affected by cold stress. Recent studies have identified a potential association between WRKY transcription factors and the cold response mechanism of crops. In this study, the AeWRKY32 transcription factor that encodes 482 amino acids was amplified from A. esculentus, and its expression level was found to be the highest in the okra flower. AeWRKY32 localized to the nucleus and displayed transcriptional activation capability. Under normal conditions, overexpression of AeWRKY32 induced anthocyanin accumulation, with higher expression levels of AtCHS1, AtCHI4, AtF3H1, and AtDFR2 in transgenic Arabidopsis. Under cold stress, anthocyanin levels were further elevated in transgenic Arabidopsis plants. At the same time, AeWRKY32 overexpression promoted ABA biosynthesis, inhibited H2O2 and O2- generation, induced stomatal closure, reduced electrolyte leakage, and thus improved the cold resistance of transgenic Arabidopsis. Furthermore, under cold stress, the expression profiles of AtCOR413, AtCOR15B, AtCBF1, and AtCBF2 were upregulated in transgenic Arabidopsis. Overall, our study provides evidence that AeWRKY32 serves as a crucial regulator in both anthocyanin accumulation and cold tolerance of transgenic Arabidopsis. Our findings could provide insights into the molecular mechanism linking AeWRKYs to plant cold tolerance.


Asunto(s)
Abelmoschus , Arabidopsis , Arabidopsis/metabolismo , Abelmoschus/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/metabolismo , Peróxido de Hidrógeno/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico , Frío
17.
Heliyon ; 9(8): e18600, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37576224

RESUMEN

Vascular endothelial cell dysfunction involving syndecan (SDC) proteoglycans contributes to acute sepsis-associated lung injury (ALI), but the exact SDC isoform involved is unclear. We aimed to clarify which SDCs are involved in ALI. A relevant gene expression dataset (GSE5883) was analysed for differentially expressed genes (DEGs) between lipopolysaccharide (LPS)-treated and control lung endothelial cells and for SDC isoform expression. Bioinformatic analyses to predict DEG function were conducted using R language, Gene Ontology, and the Kyoto Encyclopedia of Genes and Genomes. SDC2 and SDC4 expression profiles were examined under inflammatory conditions in human lung vascular endothelial cell and mouse sepsis-associated ALI models. Transcription factors regulating SDC2/4 were predicted to indirectly assess SDC involvement in septic inflammation. Of the DEGs, 224 and 102 genes were up- and downregulated, respectively. Functional analysis indicated that DEGs were involved in modulating receptor ligand and signalling receptor activator activities, cytokine receptor binding, responses to LPS and molecules of bacterial origin, regulation of cell adhesion, tumour necrosis factor signalling, and other functions. DEGs were also enriched for cytoplasmic ribonucleoprotein granules, transcription regulator complexes, and membrane raft cellular components. SDC4 gene expression was 4.5-fold higher in the LPS group than in the control group, while SDC2 levels were similar in both groups. SDC4 mRNA and protein expression was markedly upregulated in response to inflammatory injury, and SDC4 downregulation severely exacerbated inflammatory responses in both in vivo and in vitro models. Overall, our data demonstrate that SDC4, rather than SDC2, is involved in LPS-induced sepsis-associated ALI.

18.
Front Genet ; 14: 1175784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396036

RESUMEN

Lung cancer is a leading cause of cancer-related deaths worldwide, with a low 5-year survival rate due in part to a lack of clinically useful biomarkers. Recent studies have identified DNA methylation changes as potential cancer biomarkers. The present study identified cancer-specific CpG methylation changes by comparing genome-wide methylation data of cfDNA from lung adenocarcinomas (LUAD) patients and healthy donors in the discovery cohort. A total of 725 cell-free CpGs associated with LUAD risk were identified. Then XGBoost algorithm was performed to identify seven CpGs associated with LUAD risk. In the training phase, the 7-CpGs methylation panel was established to classify two different prognostic subgroups and showed a significant association with overall survival (OS) in LUAD patients. We found that the methylation of cg02261780 was negatively correlated with the expression of its representing gene GNA11. The methylation and expression of GNA11 were significantly associated with LAUD prognosis. Based on bisulfite PCR, the methylation levels of five CpGs (cg02261780, cg09595050, cg20193802, cg15309457, and cg05726109) were further validated in tumor tissues and matched non-malignant tissues from 20 LUAD patients. Finally, validation of the seven CpGs with RRBS data of cfDNA methylation was conducted and further proved the reliability of the 7-CpGs methylation panel. In conclusion, our study identified seven novel methylation markers from cfDNA methylation data which may contribute to better prognosis for LUAD patients.

19.
J Am Chem Soc ; 145(28): 15393-15404, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37429024

RESUMEN

Designing efficient formic acid oxidation reaction (FAOR) catalysts with remarkable membrane electrode assembly (MEA) performance in a direct formic acid fuel cell (DFAFC) medium is significant yet challenging. Herein, we report that the monoclinic-phased platinum-tellurium nanotrepang (m-PtTe NT) can be adopted as a highly active, selective, and stable FAOR catalyst with a desirable direct reaction pathway. The m-PtTe NT exhibits the high specific and mass activities of 6.78 mA cm-2 and 3.2 A mgPt-1, respectively, which are 35.7/22.9, 2.8/2.6, and 3.9/2.9 times higher than those of commercial Pt/C, rhombohedral-phased Pt2Te3 NT (r-Pt2Te3 NT), and trigonal-phased PtTe2 NT (t-PtTe2 NT), respectively. Simultaneously, the highest reaction tendency for the direct FAOR pathway and the best tolerance to poisonous CO intermediate can also be realized by m-PtTe NT. More importantly, even in a single-cell medium, the m-PtTe NT can display a much higher MEA power density (171.4 mW cm-2) and stability (53.2% voltage loss after 5660 s) than those of commercial Pt/C, demonstrating the great potential in operating DFAFC device. The in-situ Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy jointly demonstrate that the unique nanostructure of m-PtTe NT can effectively optimize dehydrogenation steps and inhibit the CO intermediate adsorption, as well as promote the oxidation of noxious CO intermediate, thus achieving the great improvement of FAOR activity, poisoning tolerance, and stability. Density functional theory calculations further reveal that the direct pathway is the most favorable on m-PtTe NT than r-Pt2Te3 NT and t-PtTe2 NT. The higher activation energy to produce CO and the relatively weaker binding with CO of m-PtTe NT result in the better CO tolerance. This work achieves remarkable FAOR and MEA performances of advanced Pt-based anodic catalysts for DFAFCs via a phase engineering strategy.

20.
Materials (Basel) ; 16(11)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37297117

RESUMEN

Methyl methacrylate (MMA) material is considered to be a suitable material for repairing concrete crack, provided that its large volume shrinkage during polymerization is resolved. This study was dedicated to investigating the effect of low shrinkage additives polyvinyl acetate and styrene (PVAc + styrene) on properties of the repair material and further proposes the shrinkage reduction mechanism based on the data of FTIR spectra, DSC testing and SEM micrographs. The results showed that PVAc + styrene delayed the gel point during the polymerization, and the formation of two-phase structure and micropores compensated for the volume shrinkage of the material. When the proportion of PVAc + styrene was 12%, the volume shrinkage could be as low as 4.78%, and the shrinkage stress was reduced by 87.4%. PVAc + styrene improved the bending strength and fracture toughness of most ratios investigated in this study. When 12% PVAc + styrene was added, the 28 d flexural strength and fracture toughness of MMA-based repair material were 28.04 MPa and 92.18%, respectively. After long-term curing, the repair material added with 12% PVAc + styrene showed a good adhesion to the substrate, with a bonding strength greater than 4.1 MPa and the fracture surface appearing at the substrate after the bonding experiment. This work contributes to the obtaining of a MMA-based repair material with low shrinkage, while its viscosity and other properties also can meet the requirements for repairing microcracks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...