RESUMEN
Hepatocellular carcinoma (HCC) is still one of the leading causes of tumor-related deaths. Accumulating evidence indicates that immunogenic cell death (ICD) could occur in tumor cells. However, ICD-related studies are limited in HCC. This study collected HCC RNA sequencing data from the Cancer Genome Atlas, International Cancer Genome Consortium, and Gene Expression Omnibus databases. R software was used to analyze the expression of ICD in HCC and to screen essential genes with prognostic value. qRT-PCR and WB determined the mRNA and protein expressions of hub gene. Cell viability assay, Clonal formation assay, and Live/dead staining assay were employed to determine the gene functions. After cross-analysis of differentially expressed genes (DEGs) and ICD-related genes (ICDRGs), 7 differentially expressed ICDRGs were identified in HCC. Of them, HSP90AA1, with the most excellent prognostic value in HCC, was selected, whose expression was also validated in public cohorts, cell lines, and clinical tissue samples. High HSP90AA1 expression indicated an inferior prognosis of HCC, and HSP90AA1 knockdown significantly suppressed cell viability and chemotherapy resistance of HCC. ICD-related gene HSP90AA1 was an unfavorable factor for HCC, and high HSP90AA1 expression contributed to tumor cell survival and chemotherapy resistance.
RESUMEN
Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.
RESUMEN
OBJECTIVES: Retinal vein occlusion (RVO) is the second most common retinal vascular disease worldwide, and the retinal perfusion status is closely related to the prognosis of the disease. Macular perfusion status is particularly correlated with visual acuity. This study aims to investigate the changes in macular perfusion indicators in RVO using optical coherence tomography angiography (OCTA) and analyze the correlation between macular perfusion status and visual acuity. METHODS: This cross-sectional study included 41 RVO patients, who were divided into 2 groups based on the occlusion site: 18 cases in the central retinal vein occlusion (CRVO) group and 23 cases in the branch retinal vein occlusion (BRVO) group. Additionally, they were categorized into ischemic RVO (23 cases) and non-ischemic RVO (16 cases) groups based on the presence of ischemia (2 eyes were excluded due to hemorrhage obscuring the peripheral retina, making it impossible to confirm the area of non-perfusion). A control group of 29 healthy individuals matched by sex and age was also recruited. Macular perfusion indicators were measured using OCTA, and the correlation between macular perfusion status and visual acuity was analyzed. RESULTS: Compared with healthy eyes, RVO eyes showed an increased foveal avascular zone (FAZ) area and significantly reduced superficial and deep vessel density (P<0.001). However, there were no significant differences in central foveal thickness (CFT) or macular perfusion indicators between the CRVO and BRVO groups (P>0.05). The best corrected visual acuity (BCVA) at the logarithm of the minimum angle of resolution (logMAR BCVA) was significantly negatively correlated with both superficial and deep retinal vessel density in RVO eyes (unstandardized coefficient B=-0.039, B=-0.042; P=0.017, P=0.040). The average BCVA in the ischemic RVO group was significantly worse than that in the non-ischemic RVO group (0.82±0.44 vs 0.45±0.29, P=0.007). The ischemic RVO group also had a larger FAZ area (P=0.003) and lower superficial and deep retinal vessel density (P<0.001, P=0.008, respectively) compared with the non-ischemic RVO group. The severity of macular ischemia did not correspond directly with the peripheral ischemia severity in RVO. CONCLUSIONS: Macular perfusion status is significantly reduced in RVO eyes compared to healthy eyes, which negatively impacts and limits visual acuity in RVO patients. Eyes with ischemic RVO have poorer visual acuity and macular perfusion status than those with non-ischemic RVO. OCTA is advantageous for observing vascular morphology and quantifying macular perfusion status, making it an effective tool for assessing disease progression.
Asunto(s)
Mácula Lútea , Oclusión de la Vena Retiniana , Tomografía de Coherencia Óptica , Agudeza Visual , Humanos , Oclusión de la Vena Retiniana/fisiopatología , Estudios Transversales , Tomografía de Coherencia Óptica/métodos , Mácula Lútea/irrigación sanguínea , Mácula Lútea/diagnóstico por imagen , Mácula Lútea/fisiopatología , Masculino , Femenino , Angiografía con Fluoresceína/métodos , Persona de Mediana Edad , Anciano , Vasos Retinianos/diagnóstico por imagen , Vasos Retinianos/fisiopatologíaRESUMEN
As global population ageing accelerates, cancer emerges as a predominant cause of mortality. Long non-coding RNAs (lncRNAs) play crucial roles in cancer cell growth and death, given their involvement in regulating downstream gene expression levels and numerous cellular processes. Cell death, especially non-apoptotic regulated cell death (RCD), such as ferroptosis, pyroptosis and necroptosis, significantly impacts cancer proliferation, invasion and metastasis. Understanding the interplay between lncRNAs and the diverse forms of cell death in cancer is imperative. Modulating lncRNA expression can regulate cancer onset and progression, offering promising therapeutic avenues. This review discusses the mechanisms by which lncRNAs modulate non-apoptotic RCDs in cancer, highlighting their potential as biomarkers for various cancer types. Elucidating the role of lncRNAs in cell death pathways provides valuable insights for personalised cancer interventions.
RESUMEN
HEADING AIMS: Based on the current knowledge of the molecular mechanisms by which m6A influences ferroptosis, our objective is to underscore the intricate and interdependent relationships between m6A and the principal regulatory pathways of ferroptosis, as well as other molecules, emphasizing its relevance to diseases associated with this cell death mode. MATERIALS AND METHODS: We conducted a literature search using the keywords "m6A and ferroptosis" across PubMed, Web of Science, and Medline. The search was limited to English-language publications from 2017 to 2024. Retrieved articles were managed using Endnote software. Two authors independently screened the search results and reviewed the full texts of selected articles. KEY FINDINGS: Abnormal m6A levels are often identified as critical regulators of ferroptosis. Specifically, "writers", "readers" and "erasers" that dynamically modulate m6A function regulate various pathways in ferroptosis including iron metabolism, lipid metabolism and antioxidant system. Additionally, we provide an overview of the role of m6A-mediated ferroptosis in multiple diseases and summarize the potential applications of m6A-mediated ferroptosis, including its use as a therapeutic target for diseases and as diagnostic as well as prognostic biomarkers. SIGNIFICANCE: N6-methyladenosine (m6A) modification, a prevalent RNA modification in eukaryotic cells, is crucial in regulating various aspects of RNA metabolism. Notably, accumulating evidence has implicated m6A modification in ferroptosis, a form of iron-dependent cell death characterized by elevated iron levels and lipid peroxide accumulation. Overall, this review sheds light on the potential diagnostic and therapeutic applications of m6A regulators in addressing conditions associated with ferroptosis.
Asunto(s)
Adenosina , Ferroptosis , Ferroptosis/genética , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Hierro/metabolismo , Metabolismo de los LípidosRESUMEN
Background: Recent studies have shown that the gut microbiota (GM), immune cells, and coronary heart disease (CHD) are closely related, but the causal nature of these relationships is largely unknown. This study aimed to investigate this causal relationship and reveal the effect of GM and immune cells on the risk of developing CHD using mediated Mendelian randomization (MR) analysis. Methods: First, we searched for data related to GM, immune cells, and CHD through published genome-wide association studies (GWAS). We filtered the single nucleotide polymorphisms (SNPs) associated with GM and immune cells and then performed the first MR analysis to identify disease-associated intestinal bacteria and disease-associated immune cells. Subsequently, three MR analyses were conducted: from disease-associated GM to disease-associated immune cells, from disease-associated immune cells to CHD, and from disease-associated GM to CHD. Each MR analysis was conducted using inverse variance weighting (IVW), MR-Egger regression, weighted median, weighted models, and simple models. Results: A total of six GM and 25 immune cells were found to be associated with CHD. In the MR analysis using the inverse variance weighting (IVW) method, g__Desulfovibrio.s__Desulfovibrio_piger was associated with EM DN (CD4-CD8-) %T cells (P < 0.05 and OR > 1), EM DN (CD4-CD8-) %T cells was associated with CHD (P < 0.05 and OR < 1), and g__Desulfovibrio.s__Desulfovibrio_piger was associated with CHD (P < 0.05 and OR < 1). Conclusion: An increase in the abundance of g__Desulfovibrio.s__Desulfovibrio_piger leads to an increase in the amount of EM DN (CD4-CD8-) %T cells, and an increase in the amount of EM DN (CD4-CD8-) %T cells reduces the risk of developing CHD. Our study provides some references for reducing the incidence of CHD by regulating GM and immune cells.
RESUMEN
Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.
Asunto(s)
Seda , Seda/química , Animales , Materiales Biocompatibles/química , Electrodos Implantados , Prótesis e ImplantesRESUMEN
BACKGROUND: Subphrenic carcinoma has been identified as a significant risk factor for the thermal ablation of intrahepatic tumors, resulting in a high rate of residual tumor recurrence. Some studies have proposed that combination treatment with transarterial chemoembolization (TACE) followed by radiofrequency ablation is both feasible and safe for tumors in the subphrenic region. However, research specifically examining the therapeutic outcomes of combination therapy using TACE and microwave ablation (TACE-MWA) in subphrenic tumors is lacking. AIM: To evaluate the efficacy and safety of TACE-MWA in patients with subphrenic hepatocellular carcinoma (HCC). METHODS: Between December 2017 and December 2021, 49 patients diagnosed with HCC ≤ 6 cm, who received TACE-MWA, were included in this retrospective cohort study. These patients were classified into subphrenic and non-subphrenic groups based on the distance between the diaphragm and the tumor margin. The rates of local tumor progression (LTP), progression-free survival (PFS), and overall survival (OS) were compared between the two groups. Complications were evaluated by using a grading system developed by the Society of Interventional Radiology. RESULTS: After a median follow-up time of 38 mo, there were no significant differences in LTP between the subphrenic and non-subphrenic groups (27.3% and 22.2% at 5 years, respectively; P = 0.66), PFS (55.5% at 5 years in both groups; P = 0.91), and OS (85.0% and 90.9% in the subphrenic and non-subphrenic groups at 5 years; P = 0.57). However, a significantly higher rate of LTP was observed in subphrenic HCC > 3 cm compared to those ≤ 3 cm (P = 0.085). The dosage of iodized oil [hazard ratio (HR): 1.52; 95% confidence interval (CI): 1.11-2.08; P = 0.009] and multiple tumors (HR: 13.22; 95%CI: 1.62-107.51; P = 0.016) were independent prognostic factors for LTP. There were no significant differences in complication rates between the two groups (P = 0.549). CONCLUSION: Combined TACE and MWA was practical and safe for managing subphrenic HCC. The efficacy and safety levels did not vary significantly when tumors outside the subphrenic region were treated.
RESUMEN
Rapid learning confers significant advantages to animals in ecological environments. Despite the need for speed, animals appear to only slowly learn to associate rewarded actions with predictive cues1-4. This slow learning is thought to be supported by a gradual expansion of predictive cue representation in the sensory cortex2,5. However, evidence is growing that animals learn more rapidly than classical performance measures suggest6-8, challenging the prevailing model of sensory cortical plasticity. Here, we investigated the relationship between learning and sensory cortical representations. We trained mice on an auditory go/no-go task that dissociated the rapid acquisition of task contingencies (learning) from its slower expression (performance)7. Optogenetic silencing demonstrated that the auditory cortex (AC) drives both rapid learning and slower performance gains but becomes dispensable at expert. Rather than enhancement or expansion of cue representations9, two-photon calcium imaging of AC excitatory neurons throughout learning revealed two higher-order signals that were causal to learning and performance. First, a reward prediction (RP) signal emerged rapidly within tens of trials, was present after action-related errors only early in training, and faded at expert levels. Strikingly, silencing at the time of the RP signal impaired rapid learning, suggesting it serves an associative and teaching role. Second, a distinct cell ensemble encoded and controlled licking suppression that drove the slower performance improvements. These two ensembles were spatially clustered but uncoupled from underlying sensory representations, indicating a higher-order functional segregation within AC. Our results reveal that the sensory cortex manifests higher-order computations that separably drive rapid learning and slower performance improvements, reshaping our understanding of the fundamental role of the sensory cortex.
RESUMEN
Addressing peripheral nerve defects remains a significant challenge in regenerative neurobiology. Autografts emerged as the gold-standard management, however, are hindered by limited availability and potential neuroma formation. Numerous recent studies report the potential of wireless electronic system for nerve defects repair. Unfortunately, few has met clinical needs for inadequate electrode precision, poor nerve entrapment and insufficient bioactivity of the matrix material. Herein, we present an advanced wireless electrical nerve stimulator, based on water-responsive self-curling silk membrane with excellent bioabsorbable and biocompatible properties. We constructed a unique bilayer structure with an oriented pre-stretched inner layer and a general silk membrane as outer layer. After wetting, the simultaneous contraction of inner layer and expansion of outer layer achieved controllable super-contraction from 2D flat surface to 3D structural reconfiguration. It enables shape-adaptive wrapping to cover around nerves, overcomes the technical obstacle of preparing electrodes on the inner wall of the conduit, and prevents electrode breakage caused by material expansion in water. The use of fork capacitor-like metal interface increases the contact points between the metal and the regenerating nerve, solving the challenge of inefficient and rough electrical stimulation methods in the past. Newly developed electronic stimulator is effective in restoring 10 mm rat sciatic nerve defects comparable to autologous grafts. The underlying mechanism involves that electric stimulation enhances anterograde mitochondrial transport to match energy demands. This newly introduced device thereby demonstrated the potential as a viable and efficacious alternative to autografts for enhancing peripheral nerve repair and functional recovery.
RESUMEN
Objective: This study investigated the significance of HECT domain and ankyrin repeat containing E3 ubiquitin protein ligase 1 (HACE1) in esophageal cancer (ESCA) and its underlying mechanism in ESCA regulation through the induction of RAC1 ubiquitination and degradation. Methods: Characterization studies of HACE1 in ESCA clinical tissues and cell lines were performed. Next, the effects of HACE1 on the biological behavior of ESCA cells were examined by silencing and overexpressing HACE1. Protein-protein interactions (PPIs) involving HACE1 were analyzed using data from the String website. The function of HACE1 in RAC1 protein ubiquitination was validated using the proteasome inhibitor MG132. The effects of HACE1 on ESCA cells through RAC1 were elucidated by applying the RAC1 inhibitor EHop-016 in a tumor-bearing nude mouse model. To establish the relationship between HACE1 and TRIP12, rescue experiments were conducted, mainly to evaluate the effect of TRIP12 silencing on HACE1-mediated RAC1 regulation in vitro and in vivo. The PPI between HACE1 and TRIP12 and their subcellular localization were further characterized through co-immunoprecipitation and immunofluorescence staining assays, respectively. Results: HACE1 protein expression was notably diminished in ESCA cells but upregulated in normal tissues. HACE1 overexpression inhibited the malignant biological behavior of ESCA cells, leading to restrained tumor growth in mice. This effect was coupled with the promotion of RAC1 protein ubiquitination and subsequent degradation. Conversely, silencing HACE1 exhibited contrasting results. PPI existed between HACE1 and TRIP12, compounded by their similar subcellular localization. Intriguingly, TRIP12 inhibition blocked HACE1-driven RAC1 ubiquitination and mitigated the inhibitory effects of HACE1 on ESCA cells, alleviating tumor growth in the tumor-bearing nude mouse model. Conclusion: HACE1 expression was downregulated in ESCA cells, suggesting that it curbs ESCA progression by inducing RAC1 protein degradation through TRIP12-mediated ubiquitination.
RESUMEN
Purpose: To study the relationship between LARS1 expression and immune infiltration and prognosis in hepatocellular carcinoma (HCC). Patients and Methods: The clinical characteristics together with LARS1 expression levels were obtained from the TCGA database. Immunohistochemistry confirmed LARS1 expression levels in paraneoplastic and tumor tissues. To investigate LARS1-related downstream molecules, a network of protein-protein interactions (PPIs) and the Gene Ontology (GO)/Kyoto Encyclopedia of Genes and Genomes (KEGG) were built. Furthermore, gene set enrichment analysis (GSEA) was used to analyze the pathways associated with LARS1 expression, whereas Single-sample GSEA (ssGSEA) was applied to perform an association study between immune infiltration and LARS1 gene expression. The TISCH Database and the TISIDB database were used to compare the difference of LARS1 expression in hepatocellular carcinoma and immunomodulators. Results: In comparison to that in normal tissues, the LARS1 expression level was elevated in tumor tissues. LARS1 expression exhibited substantial correlation with AFP, Histologic grade, pathologic stage, Residual tumor, and Vascular invasion in HCC. Higher LARS1 expression in HCC was linked to lower progression-free survival (PFS), disease-specific survival (DSS), and overall survival (OS). According to the GO/KEGG study, the important biological process (neutral lipid metabolic process), cellular component (triglyceride-rich plasma lipoprotein), molecular functions (lipase inhibitor activity), and KEGG pathway (cholesterol metabolism) could be a probable function mechanism in promoting HCC. Various pathways as per GSEA revealed that they were enriched in samples with elevated LARS1 expression. The expression level of LARS1 in malignant tumor cells after immunotherapy was significantly higher than that before immunotherapy. LARS1 was also remarkably linked to the infiltration level and the immunomodulators. Conclusion: LARS1 can be used as a biomarker of HCC, which is associated to immune infiltration of HCC.
RESUMEN
BACKGROUND: Lung cancer stands out as a highly perilous malignant tumor with severe implications for human health. There has been a growing interest in neutrophils as a result of their role in promoting cancer in recent years. Thus, the present study aimed to investigate the heterogeneity of neutrophils in non-small cell lung cancer (NSCLC). METHODS: Single-cell RNA sequencing of tumor-associated neutrophils (TANs) and polymorphonuclear neutrophils sourced from the Gene Expression Omnibus database was analyzed. Moreover, cell-cell communication, differentiation trajectories and transcription factor analyses were performed. RESULTS: Neutrophils were found to be closely associated with macrophages. Four major types of TANs were identified: a transitional subcluster that migrated from blood to tumor microenvironment (TAN-0), an inflammatory subcluster (TAN-1), a subpopulation that displayed a distinctive transcriptional signature (TAN-2) and a final differentiation state that promoted tumor formation (TAN-3). Meanwhile, TAN-3 displayed a marked increase in glycolytic activity. Finally, transcription factors were analyzed to uncover distinct TAN cluster-specific regulons. CONCLUSIONS: The discovery of the dynamic characteristics of TANs in the present study is anticipated to contribute to yielding a better understanding of the tumor microenvironment and advancing the treatment of NSCLC.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neutrófilos , Microambiente Tumoral , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Diferenciación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neutrófilos/metabolismo , Análisis de Expresión Génica de una Sola Célula , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma , Microambiente Tumoral/genéticaRESUMEN
Humans, even as infants, use cognitive strategies, such as exploration and hypothesis testing, to learn about causal interactions in the environment. In animal learning studies, however, it is challenging to disentangle higher-order behavioral strategies from errors arising from imperfect task knowledge or inherent biases. Here, we trained head-fixed mice on a wheel-based auditory two-choice task and exploited the intra- and inter-animal variability to understand the drivers of errors during learning. During learning, performance errors are dominated by a choice bias, which, despite appearing maladaptive, reflects a dynamic strategy. Early in learning, mice develop an internal model of the task contingencies such that violating their expectation of reward on correct trials (by using short blocks of non-rewarded "probe" trials) leads to an abrupt shift in strategy. During the probe block, mice behave more accurately with less bias, thereby using their learned stimulus-action knowledge to test whether the outcome contingencies have changed. Despite having this knowledge, mice continued to exhibit a strong choice bias during reinforced trials. This choice bias operates on a timescale of tens to hundreds of trials with a dynamic structure, shifting between left, right, and unbiased epochs. Biased epochs also coincided with faster motor kinematics. Although bias decreased across learning, expert mice continued to exhibit short bouts of biased choices interspersed with longer bouts of unbiased choices and higher performance. These findings collectively suggest that during learning, rodents actively probe their environment in a structured manner to refine their decision-making and maintain long-term flexibility.
Asunto(s)
Conducta de Elección , Aprendizaje , Animales , Ratones , Conducta de Elección/fisiología , Aprendizaje/fisiología , Masculino , Ratones Endogámicos C57BL , Recompensa , FemeninoRESUMEN
Tumor recurrence after surgical resection remains a significant challenge in breast cancer treatment. Immune checkpoint blockade therapy, as a promising alternative therapy, faces limitations in combating tumor recurrence due to the low immune response rate. In this study, we developed an implantable photo-responsive self-healing hydrogel loaded with MoS2 nanosheets and the immunoadjuvant R837 (PVA-MoS2-R837, PMR hydrogel) for in situ generation of tumor-associated antigens at the post-surgical site of the primary tumor, enabling sustained and effective activation of the immune response. This PMR hydrogel exhibited potential for near-infrared (NIR) light response, tissue adhesion, self-healing, and sustained adjuvant release. When implanted at the site after tumor resection, NIR irradiation triggered a photothermal effect, resulting in the ablation of residual cancer cells. The in situ-generated tumor-associated antigens promoted dendritic cell (DC) maturation. In a mouse model, PMR hydrogel-mediated photothermal therapy combined with immune checkpoint blockade effectively inhibited the recurrence of resected tumors, providing new insights for combating post-resection breast cancer recurrence.
Asunto(s)
Adyuvantes Inmunológicos , Neoplasias de la Mama , Disulfuros , Hidrogeles , Molibdeno , Recurrencia Local de Neoplasia , Molibdeno/química , Molibdeno/farmacología , Animales , Femenino , Disulfuros/química , Disulfuros/farmacología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Recurrencia Local de Neoplasia/prevención & control , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/química , Humanos , Línea Celular Tumoral , Nanoestructuras/química , Ratones Endogámicos BALB C , Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Antígenos de Neoplasias/inmunología , Terapia Fototérmica , Rayos InfrarrojosRESUMEN
Objective: To retrospectively study the effects of budesonide inhalation combined with conventional symptomatic treatment on serum inflammatory factor expression levels and pulmonary function in patients with cough variant asthma (CVA) and to evaluate treatment efficacy. Methods: This retrospective cohort study included 200 patients diagnosed with CVA at the Second Hospital of Jiaxing between January 2022 and June 2023 and given conventional symptomatic treatment plus budesonide inhalation were included in this study. Patients were divided into a no remission group, a partial remission group and a complete remission group based on treatment effect. The expression levels of serum inflammatory factors, cough symptom scores, and small airway function indicators in the three groups of patients at different time points were compared. Results: In the three groups of CVA patients, after receiving budesonide inhalation combined with conventional symptomatic treatment, the expression levels of serum IL-5, IL-6, IL-8, TNF-α, TGF-ß1, and IgE and number of eosinophils significantly decreased (P <0.05). There were statistically significant differences in the IL-6 and TGF-ß1 levels among the three groups of CVA patients at T1, T2 and T3. There were statistically significant differences in IgE levels, number of eosinophils, cough symptom scores, and small airway function indicators between T2 and T3 (P<0.05). The receiver operating characteristic (ROC) curve prediction analysis revealed significant differences in the expression of IL-6 and TGF-ß1 at T1, T2, and T3. Conclusion: Budesonide inhalation combined with conventional symptomatic treatment can significantly reduce the levels of serum inflammatory factors in patients with CVA to reduce inflammation and the allergic response, thereby reducing the cough symptom score, improving pulmonary function, and improving therapeutic efficacy. In addition, IL-6 and TGF-ß1 can be used as early predictors of budesonide inhalation efficacy.
RESUMEN
The family of phosphatidylethanolamine-binding proteins (PEBPs) participates in various plant biological processes, mainly flowering regulation and seed germination. In cucurbit crops, several PEBP genes have been recognized to be responsible for flowering time. However, the investigation of PEBP family members across the genomes of cucurbit species has not been reported, and their conservation and divergence in structure and function remain largely unclear. Herein, PEBP genes were identified from seven cucurbit crops and were used to perform a comparative genomics analysis. The cucurbit PEBP proteins could be classified into MFT, FT, TFL, and PEBP clades, and further, the TFL clade was divided into BFT-like, CEN-like, and TFL1-like subclades. The MFT-like, FT-like, and TFL-like proteins were clearly distinguished by a critical amino acid residue at the 85th position of the Arabidopsis FT protein. In gene expression analysis, CsaPEBP1 was highly expressed in flowers, and its expression levels in females and males were 70.5 and 89.2 times higher, respectively, than those in leaves. CsaPEBP5, CsaPEBP6, and CsaPEBP7 were specifically expressed in male flowers, with expression levels 58.1, 17.3, and 15.7 times higher, respectively, than those of leaves. At least five CsaPEBP genes exhibited the highest expression during the later stages of corolla opening. Through clustering of time-series-based RNA-seq data, several potential transcription factors (TFs) interacting with four CsaPEBPs were identified during cucumber corolla opening. Because of the tandem repeats of binding sites in promoters, NF-YB (Csa4G037610) and GATA (Csa7G64580) TFs appeared to be better able to regulate the CsaPEBP2 and CsaPEBP5 genes, respectively. This study would provide helpful information for further investigating the roles of PEBP genes and their interacting TFs in growth and development processes, such as flowering time regulation in cucurbit crops.
Asunto(s)
Cucumis sativus , Gastrópodos , Femenino , Masculino , Animales , Cucumis sativus/genética , Reproducción , Hibridación Genómica Comparativa , Factores de Tiempo , Productos Agrícolas , GenómicaRESUMEN
In this study, it was found that the enhancement in the viability of Lactobacillus plantarum under gastrointestinal conditions by encapsulating them within novel C-Phycocyanin-pectin based hydrogels (from 5.7 to 7.1 log/CFU). The hardness, the strength and the stability of the hydrogels increased when the protein concentration was increased. In addition, the addition of resveratrol (RES), and tannic acid (TA) could improve the hardness (from 595.4 to 608.3 and 637.0 g) and WHC (from 93.9 to 94.2 and 94.8 %) of the hydrogels. The addition of gallic acid (GA) enhanced the hardness (675.0 g) of the hydrogels, but the WHC (86.2 %) was decreased. During simulated gastrointestinal conditions and refrigerated storage, the addition of TA enhanced the viable bacteria counts (from 6.8 and 8.0 to 7.5 and 8.5 log/CFU) of Lactobacillus plantarum. Furthermore, TA and GA are completely encased by the protein-pectin gel as an amorphous state, while RA is only partially encased.
Asunto(s)
Lactobacillus plantarum , Probióticos , Lactobacillus plantarum/metabolismo , Pectinas/metabolismo , Hidrogeles/metabolismo , Ficocianina , Polifenoles/metabolismo , Probióticos/metabolismoRESUMEN
Phyllosticta yuccae is an important plant pathogen causing leaf spot disease in Yucca gigantea Lem. It is imperative to note that the amount of information available about the mitogenome of this subject is severely limited. This must be addressed immediately, as it is crucial to our understanding and progress in this field. To better understand the mitogenomic characteristics of P. yuccae, we conducted its sequencing by MGISEQ. Afterwards, the mitogenome was assembled and annotated. The mitogenomic characteristics and phylogenetic placement of the P. yuccae strain KUMCC 6213 were analyzed. The study revealed that the mitogenome of P. yuccae is a circular DNA molecule, consisting of 178,540 base pairs. It contains a total of 64 genes, including 14 protein-coding genes (PCGs), 26 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA), and 22 open reading frame genes (ORF), accounting for 80.98% of the total size. Repetitive sequences accounted for 15.42% of the mitogenome. The analysis of codon usage indicated that the codon UUA was the most commonly utilized, whereas the amino acid Leu was the most frequently employed. A comparative analysis of mitogenomes between P. yuccae and Macrophomina phaseolina (Tassi) Goid. showed notable variations in the position and size of gene clusters, with cox1, nad4, and nad4L genes exhibiting relatively low conservation. Phylogenetic analysis based on the 14 PCGs revealed that P. yuccae has the closest genetic relationship with M. phaseolina (Botryosphaeriaceae, Botryosphaeriales). This study first reports the mitogenome of P. yuccae and validates its phylogenetic placement. The findings enhance the knowledge of mitogenomes in Botryosphaeriales, offering novel perspectives on the genetics and evolution of the plant pathogen P. yuccae. This is crucial for the accurate prevention and management of leaf spot disease in Y. gigantea.