RESUMEN
Brain signals refer to electrical signals or metabolic changes that occur as a consequence of brain cell activity. Among the various non-invasive measurement methods, electroencephalogram (EEG) stands out as a widely employed technique, providing valuable insights into brain patterns. The deviations observed in EEG reading serve as indicators of abnormal brain activity, which is associated with neurological diseases. Brainâcomputer interface (BCI) systems enable the direct extraction and transmission of information from the human brain, facilitating interaction with external devices. Notably, the emergence of artificial intelligence (AI) has had a profound impact on the enhancement of precision and accuracy in BCI technology, thereby broadening the scope of research in this field. AI techniques, encompassing machine learning (ML) and deep learning (DL) models, have demonstrated remarkable success in classifying and predicting various brain diseases. This comprehensive review investigates the application of AI in EEG-based brain disease diagnosis, highlighting advancements in AI algorithms.
Asunto(s)
Inteligencia Artificial , Encefalopatías , Interfaces Cerebro-Computador , Electroencefalografía , Humanos , Electroencefalografía/métodos , Encefalopatías/diagnóstico , Encefalopatías/fisiopatología , Algoritmos , Aprendizaje Automático , Encéfalo/fisiología , Aprendizaje Profundo , Procesamiento de Señales Asistido por ComputadorRESUMEN
Spheroids and organoids have attracted significant attention as innovative models for disease modeling and drug screening. By employing diverse types of spheroids or organoids, it is feasible to establish microphysiological systems that enhance the precision of disease modeling and offer more dependable and comprehensive drug screening. High-throughput microphysiological systems that support optional, parallel testing of multiple drugs have promising applications in personalized medical treatment and drug research. However, establishing such a system is highly challenging and requires a multidisciplinary approach. This study introduces a dynamic Microphysiological System Chip Platform (MSCP) with multiple functional microstructures that encompass the mentioned advantages. We developed a high-throughput lung cancer spheroids model and an intestine-liver-heart-lung cancer microphysiological system for conducting parallel testing on four anti-lung cancer drugs, demonstrating the feasibility of the MSCP. This microphysiological system combines microscale and macroscale biomimetics to enable a comprehensive assessment of drug efficacy and side effects. Moreover, the microphysiological system enables evaluation of the real pharmacological effect of drug molecules reaching the target lesion after absorption by normal organs through fluid-based physiological communication. The MSCP could serves as a valuable platform for microphysiological system research, making significant contributions to disease modeling, drug development, and personalized medical treatment.
RESUMEN
Stretchable electronics have experienced remarkable progress, especially in sensors and wireless communication systems, attributed to their ability to conformably contact with rough or uneven surfaces. However, the development of complex, multifunctional, and high-precision stretchable electronics faces substantial challenges, including instability at rigid-soft interfaces and incompatibility with traditional high-precision patterning technologies. Metallized electrospun nanofibers emerge as a promising conductive filler, offering exceptional stretchability, electrical conductivity, transparency, and compatibility with existing patterning technologies. Here, this review focuses on the fundamental properties, preparation processes, patterning technologies, and application scenarios of conductive stretchable composites based on metallized nanofibers. Initially, it introduces the fabrication processes of metallized electrospun nanofibers and their advantages over alternative materials. It then highlights recent progress in patterning technologies, including collector collection, vapor deposition with masks, and lithography, emphasizing their role in enhancing precision and integration. Furthermore, the review shows the broad applicability and potential influence of metallized electrospun nanofibers in various fields through their use in sensors, wireless systems, semiconductor devices, and intelligent healthcare solutions. Ultimately, this review seeks to spark further innovation and address the prevailing challenges in stretchable electronics, paving the way for future breakthroughs in this dynamic field.
RESUMEN
Olfactory dysfunction (OD) is a highly prevalent symptom and an early sign of neurodegenerative diseases in humans. However, the roles of peripheral olfactory system in disease progression and the mechanisms behind neurodegeneration remain to be studied. Olfactory epithelium (OE) organoid is an ideal model to study pathophysiology in vitro, yet the reliance on 3D culture condition limits continual in situ monitoring of organoid development. Here, we combined impedance biosensors and live imaging for real-time spatiotemporal analysis of OE organoids morphological and physiological features during Alzheimer's disease (AD) progression. The impedance measurements showed that organoids generated from basal stem cells of APP/PS1 transgenic mice had lower proliferation rate than that from wild-type mice. In concert with the biosensor measurements, live imaging enabled to visualize the spatial and temporal dynamics of organoid morphology. Abnormal protein aggregation and accumulation, including amyloid plaques and neurofibrillary tangles, was found in AD organoids and increased as disease progressed. This multimodal in situ bioelectrical measurement and imaging provide a new platform for investigating onset mechanisms of OD, which would shed new light on early diagnosis and treatment of neurodegenerative disease.
Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Enfermedades Neurodegenerativas , Trastornos del Olfato , Humanos , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Células Madre/metabolismo , Organoides/metabolismo , Trastornos del Olfato/metabolismo , Péptidos beta-Amiloides/metabolismoRESUMEN
Although three-dimensional (3D) tumor models feature more accurate responses to drugs, the Matrigel scaffold affects the drug diffusion effect. Obtaining accurate drug spatiotemporal response characteristics is of great significance in the drug screening domain. However, the conventional cell-based sensors are difficult to perform spatiotemporal dynamics impedance monitoring of 3D cells and evaluate the anti-cancer pharmacological effect. Here, we proposed a biosensing platform involving a vertical impedance electrode array (VIEA) chip and a multichannel detection system. The platform can dynamically record 3D cell impedance in the vertical direction, which is consistent with time- and location-dependent drug penetration, closely related to spatiotemporal cell viability under drug effects. The subtle changes of impedance signals in different locations induced by drug diffusion can be detected, which demonstrates its high performance in drug systematic evaluation. The universal and high-content 3D cell biosensing platform is believed to have promising potential in pharmacodynamics investigation and preclinical drug screening.
RESUMEN
Diagnostic and therapeutic illumination on internal organs and tissues with high controllability and adaptability in terms of spectrum, area, depth, and intensity remains a major challenge. Here, we present a flexible, biodegradable photonic device called iCarP with a micrometer scale air gap between a refractive polyester patch and the embedded removable tapered optical fiber. ICarP combines the advantages of light diffraction by the tapered optical fiber, dual refractions in the air gap, and reflection inside the patch to obtain a bulb-like illumination, guiding light towards target tissue. We show that iCarP achieves large area, high intensity, wide spectrum, continuous or pulsatile, deeply penetrating illumination without puncturing the target tissues and demonstrate that it supports phototherapies with different photosensitizers. We find that the photonic device is compatible with thoracoscopy-based minimally invasive implantation onto beating hearts. These initial results show that iCarP could be a safe, precise and widely applicable device suitable for internal organs and tissue illumination and associated diagnosis and therapy.
Asunto(s)
Óptica y Fotónica , Fototerapia , Fibras Ópticas , Fármacos Fotosensibilizantes , Diseño de EquipoRESUMEN
Non-small cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. Although epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have dramatically improved the life expectancy of patients with NSCLC, concerns about TKI-induced cardiotoxicities have increased. AC0010, a novel third-generation TKI, was developed to overcome drug resistance induced by EGFR-T790M mutation. However, the cardiotoxicity of AC0010 remains unclear. To evaluate the efficacy and cardiotoxicity of AC0010, we designed a novel multifunctional biosensor by integrating microelectrodes (MEs) and interdigital electrodes (IDEs) to comprehensively evaluate cell viability, electrophysiological activity, and morphological changes (beating of cardiomyocytes). The multifunctional biosensor can monitor AC0010-induced NSCLC inhibition and cardiotoxicity in a quantitative, label-free, noninvasive, and real-time manner. AC0010 was found to significantly inhibit NCI-H1975 (EGFR-L858R/T790M mutation), while weak inhibition was found for A549 (wild-type EGFR). Negligible inhibition was found in the viabilities of HFF-1 (normal fibroblasts) and cardiomyocytes. With the multifunctional biosensor, we found that 10 µM AC0010 significantly affected the extracellular field potential (EFP) and mechanical beating of cardiomyocytes. The amplitude of EFP continuously decreased after AC0010 treatment, while the interval decreased first and then increased. We analyzed the change in the systole time (ST) and diastole time (DT) within a beating interval and found that the DT and DT/beating interval rate decreased within 1 h after AC0010 treatment. This result probably indicated that the relaxation of cardiomyocytes was insufficient, which may further aggravate the dysfunction. Here, we found that AC0010 significantly inhibited EGFR-mutant NSCLC cells and impaired cardiomyocyte function at low concentrations (10 µM). This is the first study in which the risk of AC0010-induced cardiotoxicity was evaluated. In addition, novel multifunctional biosensors can comprehensively evaluate the antitumor efficacy and cardiotoxicity of drugs and candidate compounds.
RESUMEN
The olfactory epithelium undergoes constant neurogenesis throughout life in mammals. Several factors including key signaling pathways and inflammatory microenvironment regulate the maintenance and regeneration of the olfactory epithelium. In this study, we identify TMEM59 (also known as DCF1) as a critical regulator to the epithelial maintenance and regeneration. Single-cell RNA-Seq data show downregulation of TMEM59 in multiple epithelial cell lineages with aging. Ablation of TMEM59 leads to apparent alteration at the transcriptional level, including genes associated with olfactory transduction and inflammatory/immune response. These differentially expressed genes are key components belonging to several signaling pathways, such as NF-κB, chemokine, etc. TMEM59 deletion impairs olfactory functions, attenuates proliferation, causes loss of both mature and immature olfactory sensory neurons, and promotes infiltration of inflammatory cells, macrophages, microglia cells and neutrophils into the olfactory epithelium and lamina propria. TMEM59 deletion deteriorates regeneration of the olfactory epithelium after injury, with significant reduction in the number of proliferative cells, immature and mature sensory neurons, accompanied by the increasing number of inflammatory cells and macrophages. Anti-inflammation by dexamethasone recovers neuronal generation and olfactory functions in the TMEM59-KO animals, suggesting the correlation between TMEM59 and inflammation in regulating the epithelial maintenance. Collectively, TMEM59 regulates olfactory functions, as well as neuronal generation in the olfactory epithelium via interaction with inflammation, suggesting a potential role in therapy against olfactory dysfunction associated with inflamm-aging.
Asunto(s)
Neuronas Receptoras Olfatorias , Animales , Mucosa Olfatoria/metabolismo , Inflamación/metabolismo , Neurogénesis , FN-kappa B/metabolismo , MamíferosRESUMEN
Humans perceive the world through five senses, of which olfaction is the oldest evolutionary sense that enables the detection of chemicals in the external environment. Recent progress in bioinspired electronics has boosted the development of artificial sensory systems. Here, a biohybrid olfactory system is proposed by integrating living mammals with implantable flexible neural electrodes, to employ the outstanding properties of mammalian olfactory system. In olfactory perception, the peripheral organ-olfactory epithelium (OE) projects axons into the olfactory relay station-olfactory bulb (OB). The olfactory information encoded in the neural activity is recorded from both OE and OB simultaneously using flexible neural electrodes. Results reveal that spontaneous slow oscillations (<12 Hz) in both OE and OB closely follow respiration. This respiration-locked rhythm modulates the amplitude of fast oscillations (>20 Hz), which are associated with odor perception. Further, by extracting the characteristics of odor-evoked oscillatory signals, responses of different odors are identified and classified with 80% accuracy. This study demonstrates for the first time that the flexible electrode enables chronic stable electrophysiological recordings of the peripheral and central olfactory system in vivo. Overall, the method provides a novel neural interface for olfactory biosensing and cognitive processing.
Asunto(s)
Vías Olfatorias , Olfato , Animales , Humanos , Vías Olfatorias/fisiología , Olfato/fisiología , Bulbo Olfatorio/fisiología , Odorantes , Percepción , MamíferosRESUMEN
Thanks to the gustatory system, humans can experience the flavors in foods and drinks while avoiding the intake of some harmful substances. Although great advances in the fields of biotechnology, microfluidics, and nanotechnologies have been made in recent years, this astonishing recognition system can hardly be replaced by any artificial sensors designed so far. Here, taste organoids are coupled with an extracellular potential sensor array to form a novel bioelectronic organoid and developed a taste organoids-on-a-chip system (TOS) for highly mimicking the biological sense of taste ex vivo with high stability and repeatability. The taste organoids maintain key taste receptors expression after the third passage and high cell viability during 7 days of on-chip culture. Most importantly, the TOS not only distinguishs sour, sweet, bitter, and salt stimuli with great specificity, but also recognizes varying concentrations of the stimuli through an analytical method based on the extraction of signal features and principal component analysis. It is hoped that this bioelectronic tongue can facilitate studies in food quality controls, disease modelling, and drug screening.
Asunto(s)
Sistemas Microfisiológicos , Gusto , Humanos , Lengua , Supervivencia Celular , Evaluación Preclínica de MedicamentosRESUMEN
Paralytic shellfish toxins (e.g., saxitoxin, STX; gonyautoxin-2, GTX-2) and tetrodotoxin (TTX) are highly toxic and widely distributed ion channel marine toxins which specifically block the voltage-dependent sodium channels (VDSCs), causing great harm to human health. It is urgent to exploit new detection methods with high specificity and high efficiency. Here, a portable high-throughput cardiomyocyte-based potential biosensor was established with cardiomyocytes, a 16-well microelectrodes (MEs) sensor and a robust 32-channel recording system, which presented high-quality and high-consistency extracellular field potential (EFP) signals in each well with a long duration of 80 h. The feature parameters, including firing rate (FR), spike amplitude (SA), spike slope (SS), spike duration (SD) and field potential duration (FPD), were extracted from EFP to quantitatively assess the toxic effects of these ion channel toxins. Importantly, the biosensor showed temporal specificity and parametric selectivity under toxin treatments, and FR, SS and SD were the optimal parameters to STX, TTX and GTX-2, respectively. This biosensor can rapidly detect 0.29 ng/mL STX, 0.30 ng/mL TTX and 0.16 ng/mL GTX-2 within 5 min, 10 min and 15 min, respectively. Thus, our novel multi-well cardiomyocyte-based biosensor will be a promising tool for high-effective detection of ion channel toxins.
Asunto(s)
Técnicas Biosensibles , Toxinas Marinas , Canales Iónicos , Toxinas Marinas/análisis , Miocitos Cardíacos , Saxitoxina , Tetrodotoxina/análisis , AnimalesRESUMEN
Olfactory dysfunction is an early symptom of neurodegenerative disease. Amyloid-beta oligomers (AßOs), the pathologic protein of Alzheimer's disease (AD), have been confirmed to be firstly deposited in olfactory bulb (OB), causing smell to malfunction. However, the detailed mechanisms underlying pathogenic nature of AßOs-induced olfactory neuronal degeneration in AD are not completely realized. Here, an early-stage olfactory dysfunction pathological model of AD in vitro based on biomimetic OB neuronal network chip was established for dynamic multi-site detection of neuronal electrical activity and network connection. We found both spike firing and correlation of overall neuronal network change regularly displayed gradually active state and then rapidly decay state after AßOs induction. Moreover, MK-801 and memantine were administrated at early-stage to detect alteration of OB neurons simulating nasal administration for AD treatment, which showed an almost recovery through the intermittent firing pattern. Together, this neuronal network-on-chip has revealed synaptic impairment and network neurodegeneration of olfactory dysfunction in AD, providing potential mechanisms information for early-stage progressive olfactory amyloidogenic pathology.
Asunto(s)
Enfermedad de Alzheimer , Técnicas Biosensibles , Enfermedades Neurodegenerativas , Trastornos del Olfato , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Biomimética , Maleato de Dizocilpina/metabolismo , Humanos , Memantina/metabolismo , Neuronas/metabolismo , Trastornos del Olfato/etiología , Trastornos del Olfato/metabolismo , Trastornos del Olfato/patología , Bulbo Olfatorio , OlfatoRESUMEN
The past decade has witnessed tremendous progress achieved in taste research, while few studies focus on interactions among taste compounds. Indeed, sweeteners and acidulants are commonly used food additives, and sweet-sour mixtures always provide improved tastes. For example, sensory studies have shown that sourness suppresses sweetness. However, the degree of sweetness suppression by sourness is difficult to evaluate quantitatively and objectively. Therefore, we propose a biohybrid tongue that is constructed by integrating mammalian gustatory epithelium with a microelectrode array chip. The taste quality and intensity information is coded in time-frequency patterns of local field potential. Different response patterns evoked by sweet and sour stimuli are observed, and the response is dose-dependent. Then, interaction effects of sourness against sweetness are quantified. The results indicate that suppression of sweetness by sourness occurs by increasing sourness concentrations. In summary, this study provides a powerful new tool for quantitative evaluation of sweet, sour, and their binary taste interactions that mimic the mammalian taste system.
Asunto(s)
Edulcorantes , Gusto , Animales , Mamíferos , Gusto/fisiología , LenguaRESUMEN
SignificanceDespite the identification of neural circuits and circulating hormones in olfactory regulation, the peripheral targets for olfactory modulation remain relatively unexplored. Here we show that dopamine D2 receptor (DRD2) is expressed in the cilia and somata of mature olfactory sensory neurons (OSNs), while nasal dopamine (DA) is mainly released from the sympathetic nerve terminals, which innervate the mouse olfactory mucosa (OM). We further demonstrate that DA-DRD2 signaling in the nose plays important roles in regulating olfactory function using genetic and pharmacological approaches. Moreover, the local DA synthesis in mouse OM is reduced during hunger, which contributes to starvation-induced olfactory enhancement. Altogether, we demonstrate that nasal DA and DRD2 receptor can serve as the potential peripheral targets for olfactory modulation.
Asunto(s)
Dopamina , Neuronas Receptoras Olfatorias , Receptores de Dopamina D2 , Animales , Dopamina/metabolismo , Antagonistas de los Receptores de Dopamina D2/farmacología , Humanos , Ratones , Neuronas Receptoras Olfatorias/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Transducción de Señal , OlfatoRESUMEN
Decreased responsiveness to sensory stimuli during sleep is presumably mediated via thalamic gating. Without an obligatory thalamic relay in the olfactory system, the anterior piriform cortex (APC) is suggested to be a gate in anesthetized states. However, olfactory processing in natural sleep states remains undetermined. Here, we simultaneously record local field potentials (LFPs) in hierarchical olfactory regions (olfactory bulb [OB], APC, and orbitofrontal cortex) while optogenetically activating olfactory sensory neurons, ensuring consistent peripheral inputs across states in behaving mice. Surprisingly, evoked LFPs in sleep states (both non-rapid eye movement [NREM] and rapid eye movement [REM]) are larger and contain greater gamma-band power and cross-region coherence (compared to wakefulness) throughout the olfactory pathway, suggesting the lack of a central gate. Single-unit recordings from the OB and APC reveal a higher percentage of responsive neurons during sleep with a higher incidence of suppressed firing. Additionally, nasal breathing is slower and shallower during sleep, suggesting a partial peripheral gating mechanism.
Asunto(s)
Corteza Olfatoria , Olfato , Animales , Ratones , Bulbo Olfatorio/fisiología , Vías Olfatorias/fisiología , Olfato/fisiología , Vigilia/fisiologíaRESUMEN
Odor masking is a prominent phenomenon in the biological olfactory perception system. It has been applied in industry and daily life to develop masking agents to reduce or even eliminate the adverse effects of unpleasant odors. However, it is challenging to assess the odor masking efficiency with traditional gas sensors. Here, we took advantage of the olfactory perception system of an animal to develop a system for the evaluation and quantification of odor masking based on an in vivo bioelectronic nose. The linear decomposition method was used to extract the features of the spatial response pattern of the mitral/tufted (M/T) cell population of the olfactory bulb of a rat to monomolecular odorants and their binary mixtures. Finally, the masking intensity was calculated to quantitatively measure the degree of interference of one odor to another in the biological olfactory system. Compared with the human sensory evaluation reported in a previous study, the trend of masking intensity obtained with this system positively correlated with the human olfactory system. The system could quantitatively analyze the masking efficiency of masking agents, as well as assist in the development of new masking agents or flavored food in odor or food companies.
Asunto(s)
Odorantes , Bulbo Olfatorio , Animales , Ratas , Linfocitos TRESUMEN
Recently, the introduction of surface acoustic wave (SAW) technique for microfluidics has drawn a lot of attention. The pattern and mutual communication in cell layers, tissues, and organs play a critical role in tissue homeostasis and regeneration and may contribute to disease occurrence and progression. Tissue engineering aims to repair and regenerate damaged organs, depending on biomimetic scaffolds and advanced fabrication technology. However, traditional bioengineering synthesis approaches are time-consuming, heterogeneous, and unmanageable. It is hard to pattern cells in scaffolds effectively with no impact on cell viability and function. Here, we summarize a biocompatible, easily available, label-free, and non-invasive tool, surface acoustic wave (SAW) technique, which is getting a lot of attention in tissue engineering. SAW technique can realize accurate sorting, manipulation, and cells' pattern and rapid formation of spheroids. By integrating several SAW devices onto lab-on-a-chip platforms, tissue engineering lab-on-a-chip system was proposed. To the best of our knowledge, this is the first report to summarize the application of this novel technique in the field of tissue engineering.
Asunto(s)
Dispositivos Laboratorio en un Chip , Ingeniería de Tejidos/instrumentación , Animales , Diseño de Equipo , Humanos , Sonido , Esferoides Celulares/citología , Células Madre/citología , Ingeniería de Tejidos/métodosRESUMEN
Quantifying cardiac contractile force is of paramount important in studying mechanical heart failure and screening therapeutic drugs. However, most existing methods can only measure the in-plane component of twitch force of cardiomyocytes, such that mismatching the centripetal compressive stress of heart beating in physiology. Here, a non-destructive method is developed for quantifying the compressive stress and mapping the distribution of the local stress within the 3D cardiac tissues. In detail, elastic gelatin microspheres labeled with fluorescence beads are fabricated by microfluidic chips with high throughput, and they serve as built-in pressure sensors which are wrapped by cardiomyocytes in 3D tissues. The deformation of microspheres and the displacements of fluorescent beads induced by the contraction of cardiomyocytes are demonstrated to characterize the amount and distribution of the centripetal compressive stress. Further, the method shows a potent capability to locally quantify contractile force variation of 3D cardiac tissues, which is induced by agonist (norepinephrine) and inhibitor (blebbistatin). On the whole, the method significantly improves the 3D measurement of mechanical force in vitro and provides a solution for locally quantifying the compressive stress within engineered cardiac tissues.
Asunto(s)
Gelatina , Miocitos Cardíacos , Humanos , Microesferas , Contracción Miocárdica , PresiónRESUMEN
Among basic taste sensations, bitter taste is vital to the survival of mammals due to its indispensable role in toxin prediction or identification, so the identification of bitter compounds is of great value in the pharmaceutical and food industry. Recently, bitter taste receptor (T2Rs)-based biosensors have been developed for specific bitter detection. However, the taste biosensors based on taste cells/tissues suffer from simple function, low sensitivity, low content, and limited parameters. Here, to establish a high-content, highly sensitive, and multifunctional taste biosensor, we developed a multifunctional hybrid integrated cardiomyocyte biosensor (HICB) for bitter detection. Due to the expression of bitter taste receptors in cardiomyocytes, the HICB can recognize the specific bitter agonists by synchronously recording the extracellular field potential (EFP) and mechanical beating (MB) signals from the cultured cardiomyocytes in vitro. Multiple feature parameters were defined and extracted from the electromechanical signals of cardiomyocytes to analyze the specific responses to four typical bitter compounds. The radar map, heat map, and principal component analysis (PCA) were used to visualize and classify the specific responses. Moreover, bitter-induced cardiotoxicity also was chronically evaluated, and these bitter compounds presented an inhibition effect on the electrophysiological and contractile activities of cardiomyocytes. This high-content HICB offers an alternative platform for both bitter detection and cardiotoxicity assessment, showing promising applications in the fields of taste detection and toxicity screening.