Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 24(2)2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276332

RESUMEN

Since the avalanche phenomenon was first found in bulk materials, avalanche photodiodes (APDs) have been exclusively investigated. Among the many devices that have been developed, silicon APDs stand out because of their low cost, performance stability, and compatibility with CMOS. However, the increasing industrial needs pose challenges for the fabrication cycle time and fabrication cost. In this work, we proposed an improved fabrication process for ultra-deep mesa-structured silicon APDs for photodetection in the visible and near-infrared wavelengths with improved performance and reduced costs. The improved process reduced the complexity through significantly reduced photolithography steps, e.g., half of the steps of the existing process. Additionally, single ion implantation was performed under low energy (lower than 30 keV) to further reduce the fabrication costs. Based on the improved ultra-concise process, a deep-mesa silicon APD with a 140 V breakdown voltage was obtained. The device exhibited a low capacitance of 500 fF, the measured rise time was 2.7 ns, and the reverse bias voltage was 55 V. Moreover, a high responsivity of 103 A/W@870 nm at 120 V was achieved, as well as a low dark current of 1 nA at punch-through voltage and a maximum gain exceeding 1000.

2.
Materials (Basel) ; 16(13)2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37444852

RESUMEN

Short-wavelength infrared photodetectors based on metamorphic InGaAs grown on GaSb substrates and InP substrates are demonstrated. The devices have a pBn structure that employs an AlGaAsSb thin layer as the electron barrier to suppress dark current density. The strain effect on the electrical performance of the devices was specifically studied through the growth of the pBn structure on different substrates, e.g., InP and GaSb, via a specific buffering technique to optimize material properties and minimize dark current. A lower device dark current density, down to 1 × 10-2 A/cm2 at room temperature (295 K), was achieved for the devices grown on the GaSb substrate compared to that of the devices on the InP substrate (8.6 × 10-2 A/cm2). The improved properties of the high-In component InGaAs layer and the AlGaAsSb electron barrier give rise to the low dark current of the photodetector device.

3.
Small ; 19(16): e2207641, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36658722

RESUMEN

Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.

4.
Angew Chem Int Ed Engl ; 62(4): e202217127, 2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36458422

RESUMEN

The bottom-up preparation of two-dimensional material micro-nano structures at scale facilitates the realisation of integrated applications in optoelectronic devices. Fibrous Phosphorus (FP), an allotrope of black phosphorus (BP), is one of the most promising candidate materials in the field of optoelectronics with its unique crystal structure and properties.[1] However, to date, there are no bottom-up micro-nano structure preparation methods for crystalline phosphorus allotropes.[1c, 2] Herein, we present the bottom-up preparation of fibrous phosphorus micropillar (FP-MP) arrays via a low-pressure gas-phase transport (LP-CVT) method that controls the directional phase transition from amorphous red phosphorus (ARP) to FP. In addition, self-powered photodetectors (PD) of FP-MP arrays with pyro-phototronic effects achieved detection beyond the band gap limit. Our results provide a new approach for bottom-up preparation of other crystalline allotropes of phosphorus.

5.
Food Chem ; 404(Pt A): 134183, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240563

RESUMEN

Based on graphite-like carbon nitride (g-CN) nanocomposites coupled with aptamer, a regenerable electrochemiluminescence (ECL) biosensor is developed for the quantitative detection of aflatoxin B1 (AFB1). In the existence of AFB1, the structure of the aptamer changed into a loop, and the original ECL intensity was reduced owing to the enhancement of luminescence quenching between the ferrocene modified at the end of the aptamer and the luminescent substrate g-CN. Moreover, AFB1 with oxidation state could also react with high energy state g-CN, leading to further reduction of the electrochemiluminescence signal. At optimum conditions, ECL intensity was decreased in linearity with an AFB1 concentration range from 0.005 ng/mL to 10 ng/mL, and the minimum detectable concentration was down to 0.005 ng/mL, which realized trace detection demand with high sensitivity. It was selective for AFB1 and its performance had been verified on rice samples, which indicated a promising applying prospect of non-enzymatic electrochemiluminescence AFB1 detection.


Asunto(s)
Técnicas Biosensibles , Grafito , Grafito/química , Luminiscencia , Técnicas Biosensibles/métodos , Aflatoxina B1/análisis , Límite de Detección , Mediciones Luminiscentes/métodos , Técnicas Electroquímicas
6.
Opt Lett ; 47(19): 5208-5211, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36181223

RESUMEN

Internal quantum efficiency (IQE) is an important figure of merit for photoelectric applications. While the InAs core/shell (c/s) nanowire (NW) is a promising solution for efficient quantum emission, the relationship between the IQE and shell coating remains unclear. This Letter reports mid-infrared PL measurements on InAs/InGaAs, InAs/AlSb, and InAs/GaSb c/s NWs, together with bare InAs NWs as a reference. Analyses show that the IQE is depressed by a shell coating at 9 K but gets improved by up to approximately 50% for the InGaAs shell coating at 40 -140 K and up to approximately 20% beyond 110 K for the AlSb shell. The effect is ascribed not only to the crystal quality but more importantly to the radial band alignment. The result indicates the high-temperature IQE improvement of the type-I and type-II c/s NWs and the appropriateness of the mid-infrared PL analyses for narrow-gap NW evaluation.

7.
Opt Lett ; 47(21): 5659, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219296

RESUMEN

This publisher's note contains corrections to Opt. Lett.47, 5208 (2022)10.1364/OL.473154.

8.
Natl Sci Rev ; 8(9): nwaa295, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34691730

RESUMEN

In modern electronics and optoelectronics, hot electron behaviors are highly concerned, as they determine the performance limit of a device or system, like the associated thermal or power constraint of chips and the Shockley-Queisser limit for solar cell efficiency. To date, however, the manipulation of hot electrons has been mostly based on conceptual interpretations rather than a direct observation. The problem arises from a fundamental fact that energy-differential electrons are mixed up in real-space, making it hard to distinguish them from each other by standard measurements. Here we demonstrate a distinct approach to artificially (spatially) separate hot electrons from cold ones in semiconductor nanowire transistors, which thus offers a unique opportunity to observe and modulate electron occupied state, energy, mobility and even path. Such a process is accomplished through the scanning-photocurrent-microscopy measurements by activating the intervalley-scattering events and 1D charge-neutrality rule. Findings here may provide a new degree of freedom in manipulating non-equilibrium electrons for both electronic and optoelectronic applications.

9.
Nano Lett ; 21(18): 7761-7768, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34460270

RESUMEN

Hot carrier harvest could save 30% energy loss in solar cells. So far, however, it is still unreachable as the photoexcited hot carriers are short-lived, ∼1 ps, determined by a rapid relaxation process, thus invalidating any reprocessing efforts. Here, we propose and demonstrate a feasible route to reserve hot electrons for efficient collection. It is accomplished by an intentional mix of cubic zinc-blend and hexagonal wurtzite phases in III-V semiconductor nanowires. Additional energy levels are then generated above the conduction band minimum, capturing and storing hot electrons before they cool down to the band edges. We also show the superiority of core/shell nanowire (radial heterostructure) in extracting hot electrons. The strategy disclosed here may offer a unique opportunity to modulate hot carriers for efficient solar energy harvest.

10.
Sci Rep ; 9(1): 4154, 2019 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858432

RESUMEN

Using first principles theory, we investigated the behavior of the one-dimensional (1D) topological edge states of high temperature superconductiviing FeSe/SrTiO3 films with Te atoms substitution to Se atoms in the bottom (top) layer in single-layer FeSe, as a function of strain. It was discovered that the 1D topological edge states are present in single-unit-cell FeSe film on SrTiO3, but are absent when more than 50% Se atoms are replaced by Te atoms. Stress induced displacive phase transformation exists in FeSe/SrTiO3 film when Te atoms substitute Se atoms in the bottom (top) layer in single-layer FeSe under 3% strain respectively. The 1D topological edge states are present under 3% (1.8%) strain in FeSe/SrTiO3 films with Te substitution Se in the bottom (top) layer in single-layer FeSe, even up to 5%, respectively. This indicates that the bonding angle of Se-Fe-Se (Te) and the distance of Te (or Se) atoms to the Fe plane are correlated with the topological edge states. Our findings provide an effective interface system that provides both superconducting and topological states, opening a new route for realizing 2D topological superconductors with proximity effect.

11.
Nano Lett ; 17(3): 1545-1551, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28231002

RESUMEN

Photoluminescence (PL) as a conventional yet powerful optical spectroscopy may provide crucial insight into the mechanism of carrier recombination and bandedge structure in semiconductors. In this study, mid-infrared PL measurements on vertically aligned InAs nanowires (NWs) are realized for the first time in a wide temperature range of up to 290 K, by which the radiative recombinations are clarified in the NWs grown on n- and p-type Si substrates, respectively. A dominant PL feature is identified to be from the type-II optical transition across the interfaces between the zinc-blend (ZB) and the wurtzite (WZ) InAs, a lower-energy feature at low temperatures is ascribed to impurity-related transition, and a higher-energy feature at high temperatures originates in the interband transition of the WZ InAs being activated by thermal-induced electron transfer. The optical properties of the ZB-on-WZ and WZ-on-ZB interfaces are asymmetric, and stronger nonradiative recombination and weaker carrier-phonon interaction show up in the NWs on p-type substrate in which built-in electric field forms and leads to carrier assembling around the WZ-on-ZB interface. The results indicate that wide temperature-range infrared PL analysis can serve as efficient vehicle for clarifying optical properties and bandedge processes of the crystal-phase interfaces in vertically aligned InAs NWs.

12.
Nanoscale Res Lett ; 11(1): 500, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27848235

RESUMEN

It is reported that the silicon nanocrystals (NCs) are fabricated by using self-assembly growth method with the annealing and the electron beam irradiation processes in the pulsed laser depositing, on which the visible lasing with higher gain (over 130 cm-1) and the enhanced emission in optical telecommunication window are measured in photoluminescence (PL). It is interesting that the enhanced visible electroluminescence (EL) on silicon nanocrystals (Si-NCs) is obviously observed by the naked eyes, and the light-emitting diode (LED) of the Si-NCs with external quantum efficiency of 20% is made on silicon chip in our laboratory. A four-level system is built for emission model in nanosilicon, in which the PL and EL measurement and transmission electron microscope (TEM) analysis demonstrate that the pumping levels with shorter lifetime from the rising energy of the Si quantum dots due to the quantum confinement effect occur, and the electronic localized states with longer lifetime owing to impurities bonding on Si-NCs surface are formed in the crystallized process to produce the inversion of population for lasing, where the optical gain is generated.

13.
Phys Chem Chem Phys ; 18(35): 24350-5, 2016 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-27531313

RESUMEN

Using first-principle calculations, we report for the first time, the changes in electronic structures of a single bilayer Sn stacked on a single bilayer Sb(Bi) and on a single quintuple layer Sb2Te3 induced by both interface polarization and strain. With BL Bi and QL Sb2Te3 substrates, the stanene tends to have a low-buckled configuration, whereas with BL Sb substrate, the stanene prefers to form high-buckled configurations. For strained Sn/Sb(Bi) system, we find that the Dirac cone state is not present in the band gap, whereas in strained Sn/Sb2Te3 system, spin-polarized Dirac cone can be introduced into the band gap. We discuss why tensile strain can result in the Dirac cone emerging at the K point based on a tight-binding lattice model. This theoretical study implies the feasibility of realizing quantum phase transitions for Sn thin films on suitable substrates. Our findings provide an effective manner in manipulating electronic structures and topological states in interfacial systems by using interface polarization and strain, which opens a new route for realizing atomically thin spintronic devices.

14.
Nanotechnology ; 27(6): 065602, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26684716

RESUMEN

We report the investigation of exciton dynamics in type-II self-assembled GaSb/GaAs quantum dots. The GaSb/GaAs quantum dots (QDs) were grown using a modified liquid phase epitaxy technique. Statistical size distributions of the uncapped QDs were investigated experimentally by field-emission scanning electron microscopy (SEM) and atomic force microscopy (AFM), and theoretically by an eight-band k  ·  p calculation, which demonstrated a dissolution effect. Furthermore, the low-temperature luminescence spectra of type-II GaSb/GaAs QDs with a thick capping layer exhibit well-resolved emission bands and LO-phonon-assisted transitions in the GaSb wetting layer. However, the luminescence lines quench at temperatures above 250 K, which is attributed to the weak quantum confinement of electrons participating in indirect exciton recombination. It was demonstrated that the room temperature stability of the excitons in type-II GaSb/GaAs QDs could be achieved by growing thin a capping layer, which provides strong quantum confinement in the conduction band and enhances the electron-hole Coulomb interaction, stabilizing the excitons.

15.
Nanoscale ; 7(8): 3429-34, 2015 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-25630880

RESUMEN

Optical filters with reconfigurable spectral properties are highly desirable in a wide range of applications. We propose and experimentally demonstrate a tunable submicro-optofluidic polymer guided-mode resonance (PGMR) filter. The device is composed of a periodic grating sandwiched between a high index waveguide layer and a low index capping layer, which integrates submicro-fluidic channel arrays and a PGMR filter elegantly. A finite difference time domain (FDTD) method is employed to understand the spectral properties and determine appropriate device parameters. We fabricated the polymer guided-mode resonance filter with a method combining two-beam interference lithography, floating nanofilm transfer and thermal bonding techniques. Experimental results show that our tunable submicro-optofluidic PGMR filters can provide a broad spectral tuning range (13.181 nm), a narrow bandwidth (<2.504 nm), and a high reflection efficiency (>85%) in the visible region. Such submicro-optofluidic PGMR filters are highly compatible with existing nano/microfluidic technologies and would be valuable for the integrated flexible optical system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA