Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Pharmacol Transl Sci ; 7(6): 1783-1794, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38898942

RESUMEN

The stimulator of interferon genes (STING) is a vital protein to the immune surveillance of the tumor microenvironment. In this study, we develop novel inhibitor-based radioligands and evaluate their feasibility for noninvasive visualization of STING expression in tumor-bearing mice. Analogous compounds to STING inhibitors C170 and C176 were synthesized and labeled with 131I and 18F to attain [131I]I-NFIP and [18F]F-NFEP, respectively. The radiosynthesis was achieved with high radiochemical purity (>95%) and molar activity (28.56-48.89 GBq/µmol). The affinity and specificity of tracers were assessed through cell uptake and docking experiments, demonstrating that [131I]I-NFIP exhibited high specificity for STING, with a cell-based IC50 value of 7.56 nM. Small-animal PET/SPECT imaging and biodistribution studies in tumor-bearing mice models were performed to verify the tracers' pharmacokinetics and tumor-targeting capabilities (n = 3/group). SPECT imaging demonstrated that [131I]I-NFIP rapidly accumulated in the Panc02 tumor quickly at 30 min post-injection, with a tumor-to-muscle (T/M) ratio of 2.03 ± 0.30. This ratio significantly decreased in the blocking group (1.10 ± 0.14, **P < 0.01, n = 3). Furthermore, tumor uptake and the T/M ratio of [131I]I-NFIP were positively associated with STING expression. In summary, [131I]I-NFIP is the first STING-specific inhibitor-based radioligand offering the potential for visualizing STING status in tumors.

2.
J Med Chem ; 67(10): 8460-8472, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38717104

RESUMEN

Recognizing the significance of SPECT in nuclear medicine and the pivotal role of fibroblast activation protein (FAP) in cancer diagnosis and therapy, this study focuses on the development of 99mTc-labeled dimeric HF2 with high tumor uptake and image contrast. The dimeric HF2 was synthesized and radiolabeled with 99mTc in one pot using various coligands (tricine, TPPTS, EDDA, and TPPMS) to yield [99mTc]Tc-TPPTS-HF2, [99mTc]Tc-EDDA-HF2, and [99mTc]Tc-TPPMS-HF2 dimers. SPECT imaging results indicated that [99mTc]Tc-TPPTS-HF2 exhibited higher tumor uptake and tumor-to-normal tissue (T/NT) ratio than [99mTc]Tc-EDDA-HF2 and [99mTc]Tc-TPPMS-HF2. Notably, [99mTc]Tc-TPPTS-HF2 exhibited remarkable tumor accumulation and retention in HT-1080-FAP and U87-MG tumor-bearing mice, thereby surpassing the monomeric [99mTc]Tc-TPPTS-HF. Moreover, [99mTc]Tc-TPPTS-HF2 achieved acceptable T/NT ratios in the hepatocellular carcinoma patient-derived xenograft (HCC-PDX) model, which provided identifiable contrast and imaging quality. In conclusion, this study presents proof-of-concept research on 99mTc-labeled FAP inhibitor dimers for the visualization of multiple tumor types. Among these candidate compounds, [99mTc]Tc-TPPTS-HF2 showed excellent clinical potential, thereby enriching the SPECT tracer toolbox.


Asunto(s)
Compuestos de Organotecnecio , Tomografía Computarizada de Emisión de Fotón Único , Animales , Humanos , Ratones , Tomografía Computarizada de Emisión de Fotón Único/métodos , Compuestos de Organotecnecio/química , Compuestos de Organotecnecio/farmacocinética , Compuestos de Organotecnecio/síntesis química , Línea Celular Tumoral , Diseño de Fármacos , Radiofármacos/química , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Tecnecio/química , Distribución Tisular , Dimerización , Ratones Desnudos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Endopeptidasas/metabolismo , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/química
3.
J Med Chem ; 67(10): 8361-8371, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38726551

RESUMEN

Due to the complex heterogeneity in different cancer types, the heterodimeric strategy has been intensively practiced to improve the effectiveness of tumor diagnostics. In this study, we developed a series of novel 18F-labeled biotin/FAPI-conjugated heterobivalent radioligands ([18F]AlF-NSFB, [18F]AlF-NSFBP2, and [18F]AlF-NSFBP4), synergistically targeting both fibroblast activation protein (FAP) and biotin receptor (BR), to enhance specific tumor uptake and retention. The in vitro and in vivo biological properties of these dual-targeting tracers were evaluated, with a particular focus on positron emission tomography imaging in A549 and HT1080-FAP tumor-bearing mice. Notably, in comparison to the corresponding FAP-targeted monomer [18F]AlF-NSF, biotin/FAPI-conjugated heterodimers exhibited a high uptake in tumor and prolong retention. In conclusion, as a proof-of-concept study, the findings validated the superiority of biotin/FAPI-conjugated heterodimers and the positive influence of biotin and linker on pharmacokinetics of radioligands. Within them, the bispecific [18F]AlF-NSFBP4 holds significant promise as a candidate for further clinical translational studies.


Asunto(s)
Biotina , Radioisótopos de Flúor , Animales , Humanos , Radioisótopos de Flúor/química , Biotina/química , Biotina/farmacocinética , Ratones , Diseño de Fármacos , Radiofármacos/química , Radiofármacos/farmacocinética , Radiofármacos/síntesis química , Radiofármacos/farmacología , Tomografía de Emisión de Positrones , Ratones Desnudos , Distribución Tisular , Dimerización , Línea Celular Tumoral , Ratones Endogámicos BALB C
4.
Angew Chem Int Ed Engl ; : e202401683, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719735

RESUMEN

Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and ß-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.

5.
Mol Pharm ; 21(4): 1942-1951, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447198

RESUMEN

The stimulator of interferon genes (STING) is pivotal in mediating STING-dependent type I interferon production, which is crucial for enhancing tumor rejection. Visualizing STING within the tumor microenvironment is valuable for STING-related treatments, yet the availability of suitable STING imaging probes is limited. In this study, we developed [18F]AlF-ABI, a novel 18F-labeled agent featuring an amidobenzimidazole core structure, for positron emission tomography (PET) imaging of STING in B16F10 and CT26 tumors. [18F]AlF-ABI was synthesized with a decay-corrected radiochemical yield of 38.0 ± 7.9% and radiochemical purity exceeding 97%. The probe exhibited a nanomolar STING binding affinity (KD = 35.6 nM). Upon administration, [18F]AlF-ABI rapidly accumulated at tumor sites, demonstrating significantly higher uptake in B16F10 tumors compared to CT26 tumors, consistent with STING immunofluorescence patterns. Specificity was further validated through in vitro cell experiments and in vivo blocking PET imaging. These findings suggest that [18F]AlF-ABI holds promise as an effective agent for visualizing STING in the tumor microenvironment.


Asunto(s)
Bencimidazoles , Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Microambiente Tumoral , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Radiofármacos/química , Bencimidazoles/química , Bencimidazoles/farmacología , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Humanos
6.
J Med Chem ; 67(3): 2165-2175, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38270637

RESUMEN

TMTP1 (NVVRQ) has been proven to selectively target various highly metastatic tumor cells. Nonetheless, existing TMTP1 probes encounter challenges such as rapid blood clearance, limited tumor uptake, and inadequate suitability for therapeutic interventions. To overcome these constraints, we designed and synthesized eight peptide probes, employing innovative chemical modification strategies involving d-amino acid modification and retro-inverso isomerization. Notably, [68Ga]TV2 exhibited particularly impressive performance, displaying an 88.88, 76.90, and 90.32% improvement in uptake at 15, 30, and 60 min, respectively, while maintaining a high target-to-nontarget ratio. Further research has demonstrated that [68Ga]TV2 also exhibits remarkable diagnostic potential for detecting in situ microtumors in the liver. The results suggest that through the implementation of innovative chemical modification strategies, we successfully developed a peptide precursor, NOTA-G-NVvRQ, with specific affinity for highly metastatic tumors, enhanced in vivo pharmacokinetic profile, and heightened stability in vivo, rendering it well suited for prospective investigations in combination therapy studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Radioisótopos de Galio/química , Aminoácidos , Estudios Prospectivos , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Péptidos/química
7.
Bioconjug Chem ; 34(12): 2387-2397, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38055912

RESUMEN

The objective of this study is to compare a series of albumin-based folate radiotracers for the potential imaging of folate receptor (FR) positive macrophages in advanced atherosclerotic plaques. Diversified radioiodinated FR-targeting albumin-binding probes ([131I]IBAbHF, [131I]IBNHF, and [131I]HF) were developed through various strategies. Among the three radiotracers, [131I]IBAbHF and [131I]IBNHF showed excellent in vitro stability (>98%) in saline and PBS 7.4 for 24 h. Also, good stability of [131I]IBNHF in mouse serum albumin was monitored using an HSA ELISA kit. The experiments in Raw264.7 macrophages activated by ox-LDL confirmed the specificity of tracers for FR-ß. Biodistribution studies of radiotracers were performed to verify the prolonged blood half-life. Prolonged blood half-lives of [131I]IBAbHF, [131I]HF, and [131I]IBNHF were 17.26 ± 4.29, 6.33 ± 2.64, and 5.50 ± 1.26 h, respectively. SPECT-CT imaging of ApoE-/- mice at different stages was performed to evaluate the progression and monitor the prognosis of AS. Evident [131I]IBNHF uptake in atherosclerotic lesions could be observed along with a low background signal. In summary, we demonstrated a proof-of-concept of albumin-based radioligands for FR-targeting atherosclerosis imaging and found that different incorporation of radioiodinated groups resulted in different pharmacokinetic properties. Among these candidate compounds, [131I]IBNHF would be a satisfactory radiotracer for SPECT imaging of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Albúminas , Aterosclerosis/diagnóstico por imagen , Ácido Fólico/química , Placa Aterosclerótica/diagnóstico por imagen , Distribución Tisular
8.
Mol Pharm ; 20(7): 3529-3538, 2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37243620

RESUMEN

The stimulator of interferon genes (STING) is a pivotal protein in the production of STING-dependent type I interferon, which has the potential to enhance tumor rejection. The visualization of STING in the tumor microenvironment is valuable for STING-related treatments, but few STING imaging probes have been reported to date. In this study, we developed a novel 18F-labeled agent ([18F]F-CRI1) with an acridone core structure for the positron emission tomography (PET) imaging of STING in CT26 tumors. The probe was successfully prepared with a nanomolar STING binding affinity of Kd = 40.62 nM. [18F]F-CRI1 accumulated quickly in the tumor sites and its uptake reached a maximum of 3.02 ± 0.42% ID/g after 1 h i.v. injection. The specificity of [18F]F-CRI1 was confirmed both in in vitro cell uptake and in vivo PET imaging by blocking studies. Our findings suggest that [18F]F-CRI1 may be a potential agent for visualizing STING in the tumor microenvironment.


Asunto(s)
Radioisótopos de Flúor , Neoplasias , Humanos , Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Interferones , Línea Celular Tumoral , Microambiente Tumoral
9.
Mol Pharm ; 20(2): 1015-1024, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36562303

RESUMEN

Benzamide (BZA), a small molecule that can freely cross cell membranes and bind to melanin, has served as an effective targeting group for melanoma theranostics. In this study, a novel pyridine-based BZA dimer (denoted as H-2) was labeled with 68Ga ([68Ga]Ga-H-2) for positron emission tomography (PET) imaging of malignant melanomas. [68Ga]Ga-H-2 was obtained with high radiochemical yield (98.0 ± 2.0%) and satisfactory radiochemical purity (>95.0%). The specificity and affinity of [68Ga]Ga-H-2 were confirmed in melanoma B16F10 cells and in vivo PET imaging of multiple tumor models (B16F10 tumors, A375 melanoma, and lung metastases). Monomeric [68Ga]Ga-H-1 was prepared as a control radiotracer to verify the effects of the molecular structure on pharmacokinetics. The values of the lipid-water partition coefficient of [68Ga]Ga-H-2 and [68Ga]Ga-H-1 demonstrated hydrophilicity with log P = -2.37 ± 0.07 and -2.02 ± 0.09, respectively. PET imaging and biodistribution showed a higher uptake of [68Ga]Ga-H-2 in B16F10 primary and metastatic melanomas than that in A375 melanomas. However, the relatively low uptake of monomeric [68Ga]Ga-H-1 in B16F10 tumors and high accumulation in nontarget organs resulted in poor PET imaging quality. This study demonstrates the synthesis and preclinical evaluation of the novel pyridine-based BZA dimer [68Ga]Ga-H-2 and indicates that the dimer tracer has promising applications in malignant melanoma-specific PET imaging because of its high uptake and long-time retention in malignant melanoma.


Asunto(s)
Radioisótopos de Galio , Melanoma Experimental , Animales , Radioisótopos de Galio/química , Distribución Tisular , Melanoma Experimental/diagnóstico por imagen , Melanoma Experimental/metabolismo , Benzamidas/química , Tomografía de Emisión de Positrones/métodos , Piridinas , Línea Celular Tumoral , Melanoma Cutáneo Maligno
10.
Bioconjug Chem ; 33(11): 2170-2179, 2022 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-36256849

RESUMEN

We put forward a novel targeting-triggering-therapy (TTT) scheme that combines 64Cu-based targeted radionuclide therapy (TRT) with programmed death-ligand 1 (PD-L1)-based immunotherapy for enhancing therapeutic efficacy. The αvß3 integrin-targeted 64Cu-DOTA-EB-cRGDfK (64Cu-DER) was synthesized. Flow cytometry, immunofluorescence staining, and RT-qPCR were performed to verify PD-L1 upregulation after irradiation with 64Cu-DER. Positron emission tomography imaging was performed to investigate the prominent tumor retention property of 64Cu-DER. In the MC38 tumor model, anti-PD-L1 antibody (αPD-L1 mAb) was delivered in a concurrent or sequential manner after 64Cu-DER was injected, followed by the testing of changes in tumor microenvironment (TME). PD-L1 was upregulated in a time- and dose-dependent manner after being induced by 64Cu-DER. The combination of 64Cu-DER TRT (925 MBq/kg) and αPD-L1 mAb (10 mg/kg) resulted in significant delay in tumor growth and protected against tumor rechallenge. Blockade of PD-L1 at 4 h after 64Cu-DER TRT (64Cu-DER + αPD-L1 mAb @ 4 h combination group) was able to achieve 100% survival rate, prevent tumor relapse, and evidently prolong the survival of mice. In summary, the combination of 64Cu-DER and αPD-L1 mAb in a time-dependent manner could be a promising approach to improve therapeutic efficacy. Understandably, this strategy has the potential to extend the scope of 64Cu-based TTT and merits translation into clinical practice for the better management of immune checkpoint blockade immunotherapy.


Asunto(s)
Antígeno B7-H1 , Inmunoterapia , Animales , Ratones , Línea Celular Tumoral , Inmunoterapia/métodos , Microambiente Tumoral , Factores Inmunológicos , Oligopéptidos
11.
Opt Express ; 30(20): 35854-35870, 2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36258527

RESUMEN

Optical coherence tomography angiography (OCTA) images suffer from inevitable micromotion (breathing, heartbeat, and blinking) noise. These image artifacts can severely disturb the visibility of results and reduce accuracy of vessel morphological and functional metrics quantization. Herein, we propose a multiple wavelet-FFT algorithm (MW-FFTA) comprising multiple integrated processes combined with wavelet-FFT and minimum reconstruction that can be used to effectively attenuate motion artifacts and significantly improve the precision of quantitative information. We verified the fidelity of image information and reliability of MW-FFTA by the image quality evaluation. The efficiency and robustness of MW-FFTA was validated by the vessel parameters on multi-scene in vivo OCTA imaging. Compared with previous algorithms, our method provides better visual and quantitative results. Therefore, the MW-FFTA possesses the potential capacity to improve the diagnosis of clinical diseases with OCTA.


Asunto(s)
Artefactos , Tomografía de Coherencia Óptica , Tomografía de Coherencia Óptica/métodos , Reproducibilidad de los Resultados , Algoritmos , Angiografía/métodos
12.
Eur J Nucl Med Mol Imaging ; 50(1): 27-37, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36066666

RESUMEN

PURPOSE: Stimulator of interferon genes (STING) protein plays a vital role in the immune surveillance of tumor microenvironment. Monitoring STING expression in tumors benefits the relevant STING therapy. This study aimed to develop a novel 18F-labeled agonist, dimeric amidobenzimidazole (diABZI), and firstly evaluate the feasibility of noninvasive positron emission tomography (PET) imaging of STING expression in the tumor microenvironment. METHODS: An analog of the STING agonist NOTA-DABI was synthesized and labeled with 18F via Al18F-NOTA complexation (denoted as [18F]F-DABI). Physicochemical properties, STING protein-binding affinity, and specificity of [18F]F-DABI were evaluated using cell uptake and docking assays. In vivo small-animal PET imaging and biodistribution studies of [18F]F-DABI in tumor-bearing mice were performed to verify the pharmacokinetics and tumor targeting ability. The correlation between tumor uptake and STING expression was also analyzed. RESULTS: [18F]F-DABI was produced conveniently with high radiochemical yield (44 ± 15%), radiochemical purity (> 97%) and molar activity (15-30 GBq/µmol). In vitro binding assays demonstrated that [18F]F-DABI has a favorable affinity and specificity for STING with a KD of 12.98 ± 2.07 nM. In vivo studies demonstrated the specificity of [18F]F-DABI for PET imaging of STING expression with B16F10 tumor uptake of 10.93 ± 0.93%ID/g, which was significantly different from that of blocking groups (3.13 ± 0.88%ID/g, ***p < 0.0001). Furthermore, tumor uptake of [18F]F-DABI was well positively correlated with STING expression in different tumor types. Biodistribution results demonstrated that [18F]F-DABI was predominately uptaken in the liver and intestines, indicating its hepatobiliary elimination. CONCLUSION: This proof-of-concept study demonstrated a STING-binding radioligand for PET imaging, which could be used as a potential companion diagnostic tool for related STING-agonist therapies.


Asunto(s)
Radioisótopos de Flúor , Tomografía de Emisión de Positrones , Animales , Ratones , Radioisótopos de Flúor/farmacocinética , Distribución Tisular , Línea Celular Tumoral , Tomografía de Emisión de Positrones/métodos , Expresión Génica , Interferones
13.
ACS Omega ; 7(32): 28597-28604, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35990434

RESUMEN

This study aims to develop a novel 68Ga-labeled tracer, which can covalently bind to albumin in vivo based on the maleimide-thiol strategy, and to evaluate its potential applications using positron emission tomography (PET). 68Ga-labeled maleimide-monoamide-DOTA (denoted as [68Ga]Ga-DM) was prepared conveniently with a high radiochemical yield (>90%) and radiochemical purity (>99%). Its molar activity was calculated as 249.60 ± 68.50 GBq/µmol, and the octanol-water partition coefficient (LogP) was -3.15 ± 0.08 with good stabilities. In vitro experiments showed that [68Ga]Ga-DM can bind to albumin efficiently and rapidly, with a binding fraction of over 70%. High uptake and excellent retention in blood were observed with a long half-life (t 1/2Z) of 190.15 ± 24.14 min, which makes it possible for blood pool PET imaging with high contrast. The transient micro-bleeding in the rat model was detected successfully with PET imaging. In addition, the uptakes of [68Ga]Ga-DM in the inflammatory popliteal lymph nodes depend on the severity (5.90% ID/g and 2.32% ID/g vs 1.01% ID/g for healthy lymph nodes at 0.5 h post-injection) indicating its feasibility for lymphatic imaging. In conclusion, a novel 68Ga-labeled tracer was prepared with high efficiency and yield in mild conditions. Based on the promising properties of bonding covalently to albumin, great stability, high blood contrast with a long half-life, and well environmental tolerance, [68Ga]Ga-DM could be developed as a potential tracer for PET imaging of blood pool, bleeding, and vascular permeability alteration diseases in the clinic.

14.
J Med Chem ; 65(12): 8245-8257, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35658448

RESUMEN

The fibroblast activation protein (FAP), overexpressed on cancer-associated fibroblasts (CAFs), has become a valuable target for tumor diagnosis and therapy. However, most FAP-based radioligands show insufficient tumor uptake and retention. In this study, three novel albumin-binding FAP ligands (denoted as FSDD0I, FSDD1I, and FSDD3I) were labeled with 68Ga and 177Lu to overcome these limitations. Cell-based studies and molecular docking assays were performed to identify the specificity and protein-binding properties for FAP. Positron emission tomography (PET) scans in human hepatocellular carcinoma patient-derived xenografts (HCC-PDXs) animal models revealed longer blood retention of 68Ga-FSDD0I than 68Ga-FAPI-04, 68Ga-FSDD1I, and 68Ga-FSDD3I. Remarkably, 68Ga-FSDD3I had prominent tumor-to-nontarget (T/NT) ratios. The prominent tumor retention properties of 177Lu-FSDD0I in single photon emission computed tomography (SPECT) imaging and biodistribution studies were demonstrated. In summary, this study reports a proof-of-concept study of albumin-binding radioligands for FAP-targeted imaging and targeted radionuclide therapy (TRT).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Albúminas/metabolismo , Animales , Fibroblastos/metabolismo , Radioisótopos de Galio , Humanos , Proteínas de la Membrana/metabolismo , Simulación del Acoplamiento Molecular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Medicina de Precisión , Distribución Tisular
15.
ACS Chem Neurosci ; 13(13): 1966-1973, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758284

RESUMEN

Riboflavin transporter-3 (RFVT3) is a recently discovered and novel biomarker for the theranostics of nervous system diseases. RFVT3 is significantly overexpressed in cerebral injury after ischemic stroke. Herein, we first reported an RFVT3-targeted tracer 131I-riboflavin (131I-RFLA) for SPECT imaging of ischemic stroke in vivo. 131I-RFLA was radiosynthesized by the iodogen-coating method. 131I-RFLA possessed a radiochemical yield of 69.2 ± 3.7% and greater than 95% radiochemical purity. The representative SPECT/CT images using 131I-RFLA demonstrated the conspicuously increased tracer uptake in the cerebral injury by comparison with the contralateral normal brain at 1 h and 3 and 7 d after stroke. Ex vivo autoradiography demonstrated that the ratio of infarcted to normal brain uptake was 3.63 and it was decreased to 1.98 after blocking, which reconfirmed the results of SPECT images. Importantly, a significant correlation was identified between RFVT3 expression and brain injury by H&E and immunohistochemistry staining. Therefore, RFVT3 is a new and potential biomarker for the early diagnosis of ischemic stroke. In addition, 131I-RFLA is a promising SPECT tracer for imaging RFVT3-related ischemic cerebral injury in vivo.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Isquemia Encefálica/diagnóstico por imagen , Radioisótopos de Yodo , Proteínas de Transporte de Membrana/metabolismo , Radiofármacos , Ratas , Riboflavina/metabolismo , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos
16.
Clin Cancer Res ; 28(13): 2923-2937, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35320358

RESUMEN

PURPOSE: Efforts have been devoted to select eligible candidates for PD-1/PD-L1 immune checkpoint blocker (ICB) immunotherapy. Here, we have a serendipitous finding of positron emission tomography (PET) imaging tracer 2-[18F]FDG as a potential immunomodulator. Therefore, we hypothesize that 2-[18F]FDG could induce PD-L1 expression change and create an immune-favorable microenvironment for tumor immunotherapy. EXPERIMENTAL DESIGN: We designed a series of assays to verify PD-L1 upregulation, and tested immunotherapy regimens based on 2-[18F]FDG and anti-PD-L1 mAb, as monotherapy and in combination, in fully immunocompetent mice of MC38 and CT26 models. PD-L1 expression and tumor microenvironment (TME) changes were analyzed by Western blot, transcriptomics study, and flow-cytometric analysis. RESULTS: PD-L1 was upregulated in a time- and dose-dependent manner after being induced by 2-[18F]FDG. The activation of NF-κB/IRF3 pathway and STAT1/3-IRF1 pathway play crucial parts in modulating PD-L1 expression after DNA damage and repair. Improved αPD-L1 mAb utilization rate and significant tumor growth delay were observed when the personalized therapeutic alliance of 2-[18F]FDG stimulation and ICB was used. In addition, combination of 2-[18F]FDG with αPD-L1 mAb could reprogram a TME from "cold" to "hot," to make low immunoactivity tumors sensitive to ICB therapy. CONCLUSIONS: In summary, this promising paradigm has the potential to expand the traditional tumor theranostics. 2-[18F]FDG-based ICB immunotherapy is highly significant in enhancing antitumor effect. A research of 2-[18F]FDG-based ICB immunotherapy has been proposed to enhance the antitumor effect.


Asunto(s)
Fluorodesoxiglucosa F18 , Neoplasias , Animales , Antígeno B7-H1 , Línea Celular Tumoral , Factores Inmunológicos/farmacología , Inmunoterapia/métodos , Ratones , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Tomografía de Emisión de Positrones , Microambiente Tumoral
17.
Eur J Nucl Med Mol Imaging ; 49(8): 2645-2654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35122512

RESUMEN

PURPOSE: Bacterial infection and antibiotic resistance are serious threats to human health. This study aimed to develop two novel radiotracers, 18F-NTRP and 18F-NCRP, that possess a specific nitroreductase (NTR) response to image deep-seated bacterial infections using positron emission tomography (PET). This method can distinguish infection from sterile inflammation. METHODS: 18F-NTRP and 18F-NCRP were synthesized via a one-step method; all the steps usually involved in tracer radiosynthesis were successfully adapted in the All-In-One automated module. After the physiochemical properties of 18F-NTRP and 18F-NCRP were characterized, their specificity and selectivity for NTR were verified in E. coli and S. aureus. The ex vivo biodistribution of the tracers was evaluated in normal mice. MicroPET-CT imaging was performed in mouse models of bacterial infection and inflammation after the administration of 18F-NTRP or 18F-NCRP. RESULTS: Fully automated radiosynthesis of 18F-NTRP and 18F-NCRP was achieved within 90-110 min with overall decay-uncorrected, isolated radiochemical yields of 21.24 ± 4.25% and 11.3 ± 3.78%, respectively. The molar activities of 18F-NTRP and 18F-NCRP were 320 ± 40 GBq/µmol and 275 ± 33 GBq/µmol, respectively. In addition, 18F-NTRP and 18F-NCRP exhibited high selectivity and specificity for NTR response. PET-CT imaging in bacteria-infected mouse models with 18F-NTRP or 18F-NCRP showed significant radioactivity uptake in either E. coli- or S. aureus-infected muscles. The uptake for E. coli-infected muscles, 2.4 ± 0.2%ID/g with 18F-NTRP and 4.05 ± 0.49%ID/g with 18F-NCRP, was up to three times greater than that for uninfected control muscles. Furthermore, for both 18F-NTRP and 18F-NCRP, the uptake in bacterial infection was 2.6 times higher than that in sterile inflammation, allowing an effective distinction of infection from inflammation. CONCLUSION: 18F-NTRP and 18F-NCRP are worth further investigation to verify their potential clinical application for distinguishing bacterial infection from sterile inflammation via their specific NTR responsiveness.


Asunto(s)
Infecciones Bacterianas , Mecloretamina , Animales , Escherichia coli , Radioisótopos de Flúor/química , Humanos , Inflamación/diagnóstico por imagen , Ratones , Nitrorreductasas , Tomografía Computarizada por Tomografía de Emisión de Positrones , Tomografía de Emisión de Positrones/métodos , Staphylococcus aureus , Distribución Tisular , Tomografía Computarizada por Rayos X
18.
Eur J Nucl Med Mol Imaging ; 49(2): 503-516, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34155537

RESUMEN

PURPOSE: The formation of advanced plaques, which is characterized by the uninterrupted aggregation of macrophages with high expression of folate receptor-ß (FR-ß), is observed in several concomitant metabolic syndromes. The objective of this study was to develop a novel FR-ß-targeted single-photon emission computed tomography (SPECT) radiotracer and validate its application to the noninvasive detection of atherosclerosis (AS) plaque and non-alcoholic fatty liver (NAFL). METHODS: Two radioiodinated probes, [131I]IPBF and [131I]IBF, were developed, and cell uptake studies were used to identify their specific targets for activated macrophages. Biodistribution in normal mice was performed to obtain the pharmacokinetic information of the probes. Apolipoprotein E knockout (ApoE-/-) mice with atherosclerotic aortas were induced by a high-fat and high-cholesterol (HFHC) diet. To investigate the affinity of radiotracers to FR-ß, Kd values were determined using in vitro assays. In addition, the assessments of the aorta in the ApoE-/- mice at different stages were performed using in vivo SPECT/CT imaging, and the findings were compared by histology. RESULTS: Both [131I]IPBF and [131I]IBF were synthesized with > 95% radiochemical purity and up to 3 MBq/nmol molar activity. In vitro assay of [131I]IPBF showed a moderate binding affinity to plasma proteins and specific uptake in activated macrophages. The prolonged blood elimination half-life (t1/2z) of [131I]IPBF (8.14 h) was observed in a pharmacokinetic study of normal mice, which was significantly longer than that of [131I]IBF (t1/2z = 2.95 h). As expected, the Kd values of [131I]IPBF and [131I]IBF in the Raw 264.7 cells were 43.94 ± 9.83 nM and 61.69 ± 15.19 nM, respectively. SPECT imaging with [131I]IPBF showed a high uptake in advanced plaques and NAFL. Radioactivity in excised aortas examined by ex vivo autoradiography further confirmed the specific uptake of [131I]IPBF in high-risk AS plaques. CONCLUSIONS: In summary, we reported a proof-of-concept study of an albumin-binding folate derivative for macrophage imaging. The FR-ß-targeted probe, [131I]IPBF, significantly prolongs the plasma elimination half-life and has the potential for the monitoring of AS plaques and concomitant fatty liver.


Asunto(s)
Aterosclerosis , Enfermedad del Hígado Graso no Alcohólico , Radiofármacos , Tomografía Computarizada de Emisión de Fotón Único , Albúminas , Animales , Macrófagos/metabolismo , Ratones , Radiofármacos/farmacocinética , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único/métodos
19.
ACS Appl Mater Interfaces ; 13(46): 54727-54738, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34766763

RESUMEN

The therapeutic effect of general photodynamic therapy (PDT) is gravely limited by the poor penetration depth of exogenous light radiation. In recent years, Cerenkov radiation (CR) has been exploringly applied to overcome this critical defect. However, the currently reported type I photosensitizers for CR-induced PDT (CRIT) are only TiO2 nanoparticle-based agents with numerous fatally intrinsic drawbacks. Herein, we developed NH2-Ti32O16 nanocluster (NTOC)-derived ultrasmall nanophotosensitizers (NPSs, denoted as TDPs) via innovate ligand engineering. The introduced dopamine (DA) ligands not only facilitate the water solubility and photocatalytic properties of NPSs but also involve the tumor-targeting behavior through the binding affinity with DA receptors on cancer cells. Under CR irradiation, TDPs enable efficient hydroxyl radical (·OH) generation benefiting from the enhanced separation of hole (h+)-electron (e-) pairs, where the h+ will react with H2O to execute type I PDT and the transferred e- can realize the augmentation of Ti3+ to substantially promote the therapeutic index of chemodynamic therapy. This study provides an easy but feasible strategy for constructing versatile NPSs with an ultrasmall framework structure, propounding a refreshing paradigm for implementing efficient CR-induced combined therapy (CRICT) and spurring the development of CR and titanium-familial nanoplatforms in the fields of photocatalysis and nanocatalytic medicine.


Asunto(s)
Antineoplásicos/farmacología , Nanopartículas/química , Óxidos/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Titanio/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Partículas beta , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Ligandos , Neoplasias Hepáticas Experimentales/diagnóstico por imagen , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Imagen Óptica , Óxidos/química , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Titanio/química
20.
Mol Pharm ; 18(11): 4140-4147, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34657437

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic disease with poor prognosis. Evidence has shown that vimentin is a key regulator of lung fibrogenesis. 99mTc-labeled N-acetylglucosamine-polyethyleneimine (NAG-PEI), a vimentin-targeting radiotracer, was used for the early diagnosis of IPF, and NAG-PEI was also used as a therapeutic small interfering RNA (siRNA) delivery vector for the treatment of IPF in this study. Single-photon emission-computed tomography (SPECT) imaging of bleomycin (BM)- and silica-induced IPF mice with 99mTc-labeled NAG-PEI was performed to visualize pulmonary fibrosis and monitor the treatment efficiency of siRNA-loaded NAG-PEI, lipopolysaccharide (LPS, a tolerogenic adjuvant), or zymosan (ZYM, an immunostimulant). The lung uptakes of 99mTc-NAG-PEI in the BM- and silica-induced IPF mice were clearly and directly correlated with IPF progression. The lung uptake of 99mTc-NAG-PEI in the NAG-PEI/TGF-ß1-siRNA treatment group or LPS treatment group was evidently lower than that in the control group, while the lung uptake of 99mTc-NAG-PEI was significantly higher in the ZYM treatment group compared to that in the control group. These results demonstrate that NAG-PEI is a potent MicroSPECT imaging-guided theranostic platform for IPF diagnosis and therapy.


Asunto(s)
Fibrosis Pulmonar Idiopática/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , Radiofármacos/administración & dosificación , Factor de Crecimiento Transformador beta1/antagonistas & inhibidores , Vimentina/antagonistas & inhibidores , Acetilglucosamina/administración & dosificación , Acetilglucosamina/química , Animales , Biodiversidad , Bleomicina/administración & dosificación , Bleomicina/toxicidad , Modelos Animales de Enfermedad , Femenino , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/patología , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Polietileneimina/administración & dosificación , Polietileneimina/química , ARN Interferente Pequeño/genética , Radiofármacos/química , Radiofármacos/farmacocinética , Dióxido de Silicio/administración & dosificación , Dióxido de Silicio/toxicidad , Tecnecio , Tomografía Computarizada de Emisión de Fotón Único , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA