Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Food Sci Nutr ; 12(2): 1119-1132, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370040

RESUMEN

Functional constipation (FC) has a negative impact on patients' quality of life. We hypothesized that dietary supplementation with xylo-oligosaccharides (XOS) or fructo-oligosaccharides (FOS) would improve constipation symptoms by influencing the gut microbiota. A randomized double-blind controlled trial was conducted in FC patients. Patients were randomly divided into 6 groups and given a dietary supplement containing XOS at doses of 3, 5, or 10 g/day, FOS at doses of 10 and 20 g/day, or placebo at 5 g/day for one month. We compared improvements in gastrointestinal function after the intervention using the Bristol Stool Form Scale (BSFS), Cleveland Clinic Constipation Score (CCCS), and Quality of Life Scale for Patients with Constipation (PAC-QoL). 16S rRNA sequencing was used to assess changes in the structure of the gut microbiota. Changes in individual bacteria had significant effects in reducing gastrointestinal symptoms during the intervention, even though the flora structure remained unchanged from baseline. Compared to FOS, XOS enriched Bifidobacterium at a lower dose, and patients receiving XOS supplementation showed significant improvements in constipation symptoms without side effects such as diarrhea and flatulence.

2.
PLoS Biol ; 21(6): e3002142, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37289842

RESUMEN

Rab26 is known to regulate multiple membrane trafficking events, but its role in insulin secretion in pancreatic ß cells remains unclear despite it was first identified in the pancreas. In this study, we generated Rab26-/- mice through CRISPR/Cas9 technique. Surprisingly, insulin levels in the blood of the Rab26-/- mice do not decrease upon glucose stimulation but conversely increase. Deficiency of Rab26 promotes insulin secretion, which was independently verified by Rab26 knockdown in pancreatic insulinoma cells. Conversely, overexpression of Rab26 suppresses insulin secretion in both insulinoma cell lines and isolated mouse islets. Islets overexpressing Rab26, upon transplantation, also failed to restore glucose homeostasis in type 1 diabetic mice. Immunofluorescence microscopy revealed that overexpression of Rab26 results in clustering of insulin granules. GST-pulldown experiments reveal that Rab26 interacts with synaptotagmin-1 (Syt1) through directly binding to its C2A domain, which interfering with the interaction between Syt1 and SNAP25, and consequently inhibiting the exocytosis of newcomer insulin granules revealed by TIRF microscopy. Our results suggest that Rab26 serves as a negative regulator of insulin secretion, via suppressing insulin granule fusion with plasma membrane through sequestering Syt1.


Asunto(s)
Diabetes Mellitus Experimental , Células Secretoras de Insulina , Insulinoma , Islotes Pancreáticos , Neoplasias Pancreáticas , Animales , Ratones , Diabetes Mellitus Experimental/metabolismo , Exocitosis/fisiología , Glucosa/metabolismo , Insulina/metabolismo , Secreción de Insulina , Células Secretoras de Insulina/metabolismo , Insulinoma/metabolismo , Islotes Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo
3.
Biosci Rep ; 43(5)2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37057886

RESUMEN

SNAP25 is a core protein of the SNARE complex, which mediates stimulus-dependent secretion of insulin from the pancreatic ß cells. SNAP23 is a SNAP25 homolog, however, the functional role of SNAP23 in the exocytic secretion of insulin is not known. Therefore, in the present study, we investigated the functional role of SNAP23 in the insulin secretory pathway. Our results demonstrated that over-expression of SNAP23 inhibited the secretion of insulin from the INS-1 cells. Conversely, SNAP23 depletion increased insulin secretion. Mechanistically, overexpression of SNAP23 decreased SNARE complex formation by blocking the binding of SNAP25 to STX1A. The full-length SNAP23 protein with the N-terminal and C-terminal SNARE binding domains was required for competition. Moreover, SNAP23 serine 95 phosphorylation plays a crucial function in insulin secretion by enhancing the interaction between SNAP23 and STX1A. The present study presents a new pathway regulating insulin secretion. Therefore, SNAP23 may be a potential therapeutic target for diabetes mellitus.


Asunto(s)
Proteínas Qb-SNARE , Proteínas de Transporte Vesicular , Insulina/metabolismo , Secreción de Insulina , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas Qc-SNARE/genética , Proteínas Qc-SNARE/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Ratas
4.
Cell Death Dis ; 12(4): 284, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731709

RESUMEN

Rab proteins play crucial roles in membrane trafficking. Some Rab proteins are implicated in cancer development through regulating protein sorting or degradation. In this study, we found that the expression of Rab26 is suppressed in the aggressive breast cancer cells as compared to the levels in non-invasive breast cancer cells. Over-expression of Rab26 inhibits cell migration and invasion, while Rab26 knockdown significantly promotes the migration and invasion of breast cancer cells. Rab26 reduces focal adhesion association of Src kinase and induces endosomal translocation of Src. Further experiments revealed that Rab26 mediates the autophagic degradation of phosphorylated Src through interacting with ATG16L1, consequently, resulting in the suppression of the migration and invasion ability of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Proteínas de Unión al GTP rab/metabolismo , Familia-src Quinasas/metabolismo , Autofagia , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Femenino , Humanos , Fosforilación
5.
Biochem Biophys Res Commun ; 534: 240-247, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33272569

RESUMEN

Mild hypothermia is a well-established technique for alleviating neurological injuries in clinical surgery. RNA-binding protein motif 3 (RBM3) has been identified as a crucial factor in mediating hypothermic neuroprotection, providing its induction as a promising strategy for mimicking therapeutic hypothermia. However, little is known about molecular control of RBM3 and signaling pathways affected by hypothermia. In the present study, human SH-SY5Y neuroblastoma cells were used as a neural cell model. Screening of signaling pathways showed that cold exposure led to inactivation of ERK and AMPK pathways, and activation of FAK and PLCγ pathways, with activities of p38, JNK and AKT pathways moderately changed. Next, various small molecule inhibitors specific to these signaling pathways were applied. Interestingly, only FAK-specific inhibitor exhibited a significant inhibitory effect on hypothermia-induced RBM3 gene transcription and protein expression. Likewise, FAK silencing using siRNA technique significantly abrogated the induction of RBM3 by hypothermia. Moreover, FAK inhibition accounted for an inactivation of Src, a known kinase downstream of FAK. Next, either the silencing of Src by siRNA or its inactivation by a chemical inhibitor, strongly blocked the induction of RBM3 by cooling. Notably, in HEK293 and PC12 cells, FAK/Src activation was also shown to be indispensable for hypothermia-stimulated RBM3 expression. Lastly, the CCK8 and Western blot assays showed that both FAK/Src inacitivation and their knockdown substantially abrogate the neuroprotective effects of mild hypothermia against rotenone in SH-SY5Y cells. These data suggest that FAK/Src signaling axis regulates the transcription of Rbm3 gene and mediates neuroprotective effects of mild hypothermia.


Asunto(s)
Frío , Quinasa 1 de Adhesión Focal/metabolismo , Neuronas/metabolismo , Proteínas Proto-Oncogénicas pp60(c-src)/metabolismo , Proteínas de Unión al ARN/biosíntesis , Transducción de Señal , Animales , Línea Celular Tumoral , Regulación de la Expresión Génica , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas , FN-kappa B/metabolismo , Neuronas/enzimología , Proteínas de Unión al ARN/genética , Ratas , Rotenona/toxicidad , Transcripción Genética
6.
Diabetes ; 69(1): 67-82, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624142

RESUMEN

Insulin secretion is tightly regulated by membrane trafficking. RILP (Rab7 interacting lysosomal protein) regulates the endocytic trafficking, but its role in insulin secretion has not been investigated. In this study, we found that overexpression of RILP inhibited insulin secretion in both the ß-cell lines and freshly isolated islets. Consequently, the expression of RILP in islets suppressed the ability to recover the glucose homeostasis in type 1 diabetes mice upon transplantation. Of physiological relevance is that RILP expression was upregulated in the diabetic mouse islets. Mechanistically, overexpression of RILP induced insulin granule clustering, decreased the number of proinsulin-containing granules in ß-cells, and significantly promoted proinsulin degradation. Conversely, RILP depletion sustained proinsulin and increased insulin secretion. The proinsulin degradation induced by RILP expression was inhibited by lysosomal inhibitors and was Rab7-dependent. Finally, we showed that RILP interacts with insulin granule-associated Rab26 to restrict insulin secretion. This study presents a new pathway regulating insulin secretion and mechanically demonstrates a novel function of RILP in modulating insulin secretion through mediating the lysosomal degradation of proinsulin.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Secreción de Insulina/genética , Células Secretoras de Insulina/metabolismo , Lisosomas/metabolismo , Proinsulina/metabolismo , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteolisis , Ratas , Ratas Sprague-Dawley
7.
J Cell Mol Med ; 23(10): 7010-7020, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31436914

RESUMEN

Mild hypothermia and its key product, cold-inducible protein RBM3, possess robust neuroprotective effects against various neurotoxins. However, we previously showed that mild hypothermia fails to attenuate the neurotoxicity from MPP+ , one of typical neurotoxins related to the increasing risk of Parkinson disease (PD). To better understand the role of mild hypothermia and RBM3 in PD progression, another known PD-related neurotoxin, rotenone (ROT) was utilized in this study. Using immunoblotting, cell viability assays and TUNEL staining, we revealed that mild hypothermia (32°C) significantly reduced the apoptosis induced by ROT in human neuroblastoma SH-SY5Y cells, when compared to normothermia (37°C). Meanwhile, the overexpression of RBM3 in SH-SY5Y cells mimicked the neuroprotective effects of mild hypothermia on ROT-induced cytotoxicity. Upon ROT stimulation, MAPK signalling like p38, JNK and ERK, and AMPK and GSK-3ß signalling were activated. When RBM3 was overexpressed, only the activation of p38, JNK and ERK signalling was inhibited, leaving AMPK and GSK-3ß signalling unaffected. Similarly, mild hypothermia also inhibited the activation of MAPKs induced by ROT. Lastly, it was demonstrated that the MAPK (especially p38 and ERK) inhibition by their individual inhibitors significantly decreased the neurotoxicity of ROT in SH-SY5Y cells. In conclusion, these data demonstrate that RBM3 mediates mild hypothermia-related neuroprotection against ROT by inhibiting the MAPK signalling of p38, JNK and ERK.


Asunto(s)
Frío , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Neuroprotección/efectos de los fármacos , Neurotoxinas/toxicidad , Proteínas de Unión al ARN/metabolismo , Rotenona/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Humanos , Hipotermia Inducida
8.
BMJ Open ; 9(5): e023724, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31101692

RESUMEN

INTRODUCTION: Left ventricular ejection fraction (LVEF) ≤35%, as current significant implantable cardioverter-defibrillator (ICD) indication for primary prevention of sudden cardiac death (SCD) in heart failure (HF) patients, has been widely recognised to be inefficient. Improvement of patient selection for low LVEF (≤35%) is needed to optimise deployment of ICD. Most of the existing prediction models are not appropriate to identify ICD candidates at high risk of SCD in HF patients with low LVEF. Compared with traditional statistical analysis, machine learning (ML) can employ computer algorithms to identify patterns in large datasets, analyse rules automatically and build both linear and non-linear models in order to make data-driven predictions. This study is aimed to develop and validate new models using ML to improve the prediction of SCD in HF patients with low LVEF. METHODS AND ANALYSIS: We will conduct a retroprospective, multicentre, observational registry of Chinese HF patients with low LVEF. The HF patients with LVEF ≤35% after optimised medication at least 3 months will be enrolled in this study. The primary endpoints are all-cause death and SCD. The secondary endpoints are malignant arrhythmia, sudden cardiac arrest, cardiopulmonary resuscitation and rehospitalisation due to HF. The baseline demographic, clinical, biological, electrophysiological, social and psychological variables will be collected. Both ML and traditional multivariable Cox proportional hazards regression models will be developed and compared in the prediction of SCD. Moreover, the ML model will be validated in a prospective study. ETHICS AND DISSEMINATION: The study protocol has been approved by the Ethics Committee of the First Affiliated Hospital of Nanjing Medical University (2017-SR-06). All results of this study will be published in international peer-reviewed journals and presented at relevant conferences. TRIAL REGISTRATION NUMBER: ChiCTR-POC-17011842; Pre-results.


Asunto(s)
Muerte Súbita Cardíaca/etiología , Insuficiencia Cardíaca/complicaciones , Aprendizaje Automático , Sistema de Registros , Proyectos de Investigación , China , Insuficiencia Cardíaca/fisiopatología , Humanos , Estudios Multicéntricos como Asunto , Estudios Prospectivos , Estudios Retrospectivos , Volumen Sistólico , Función Ventricular Izquierda
9.
Med Sci Monit ; 24: 8870-8877, 2018 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-30531686

RESUMEN

BACKGROUND Angiogenesis plays a crucial role in myocardial infarction (MI) treatment by ameliorating myocardial remodeling, thus improving cardiac function and preventing heart failure. Muscone has been reported to have beneficial effects on cardiac remodeling in MI mice. However, the effects of muscone on angiogenesis in MI mice and its underlying mechanisms remain unknown. MATERIAL AND METHODS Mice were randomly divided into sham, MI, and MI+muscone groups. The MI mouse model was established by ligating the left anterior descending coronary artery. Mice in the sham group received the same procedure except for ligation. Mice were administered muscone or an equivalent volume of saline for 4 consecutive weeks. Cardiac function was evaluated by echocardiograph after MI for 2 and 4 weeks. Four weeks later, all mice were sacrificed and Masson's trichrome staining was used to assess myocardial fibrosis. Isolectin B4 staining was applied to evaluate the angiogenesis in mouse hearts. Immunohistochemistry, Western blot analysis, and quantitative real-time polymerase chain reaction (qPCR) were performed to analyze expression levels of HIF-1a and its downstream genes. RESULTS Compared with the MI group, muscone treatment significantly improved cardiac function and reduced myocardial fibrosis. Moreover, muscone enhanced angiogenesis in the peri-infarct region and p-VEGFR2 expression in the vascular endothelial cells. Western blot analysis and qPCR showed that muscone upregulated expression levels of HIF-1a and VEGFA. CONCLUSIONS Muscone improved cardiac function in MI mice through augmented angiogenesis. The potential mechanism of muscone treatment in regulating angiogenesis of MI mice was upregulating expression levels of HIF-1α and VEGFA.


Asunto(s)
Cicloparafinas/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Factor A de Crecimiento Endotelial Vascular/fisiología , Inductores de la Angiogénesis , Animales , Modelos Animales de Enfermedad , Ecocardiografía , Masculino , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/patología , Neovascularización Patológica/metabolismo , Neovascularización Patológica/fisiopatología , Neovascularización Fisiológica/fisiología , Datos Preliminares , Función Ventricular Izquierda , Remodelación Ventricular/fisiología
10.
J Mol Graph Model ; 80: 211-216, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29414040

RESUMEN

Olmesartan (OL) is the pharmacologically active metabolite of Olmesartan medoxomil (OM), an FDA-approved angiotensin II receptor antagonist for administrating cardiovascular diseases. The drug has been found to have potential effects on diverse protein kinase signaling involved in the pathogenesis of atherosclerosis, either by directly inhibiting the hub kinases or by indirectly modulating marginal members in the signaling pathways. In the present study, we computationally model the kinase-chemical Interaction Profile between six OL-related chemicals (i.e. OL, OM, Valsartan [VL], Losartan [LS], Candesartan [CD] and Telmisartan [TL]) and 23 human protein kinases in atherosclerosis. The profile is analyzed systematically at molecular level to identify unexpected kinase targets for OL. There is a good consistence between co-citation frequency and affinity scoring for the chemical association with kinase candidates; the OL and its analogs VL and LS exhibit a similar binding profile to the atherosclerosis kinase spectrum. It is suggested that the Ser/Thr-specific kinases PI3Kα and ROCK1 are potential druggable targets of OL for atherosclerosis therapy. As a paradigm, kinase assays reveal that the inhibitory potency of OL and Y-27632 (positive control) on ROCK1 is determined at micromolar level, while the OM (negative control) possesses no detectable activity for the kinase.


Asunto(s)
Imidazoles/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/química , Proteínas Quinasas/química , Tetrazoles/química , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/etiología , Aterosclerosis/metabolismo , Activación Enzimática , Imidazoles/farmacología , Conformación Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Tetrazoles/farmacología
11.
J Mol Neurosci ; 63(2): 142-151, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28831692

RESUMEN

Induced by hypothermia, cold-inducible protein RBM3 (RNA-binding protein motif 3), has been implicated in neuroprotection against various toxic insults such as hypoxia and ischemia. However, whether mild hypothermia and RBM3 prevent neural cells from UV irradiation-elicited apoptosis is unclear. In the present study, human neuroblastoma cell line SH-SY5Y was used as a cell model for neural cell death, and it was demonstrated that mild hypothermia protects SH-SY5Y cells from UV irradiation-induced apoptosis. However, the protective effect of mild hypothermia was abrogated when RBM3 was silenced. Conversely, the overexpression of RBM3 rescued SH-SY5Y cells from UV-induced apoptosis, as indicated by the decreased levels of cleaved caspase-3 and PARP, and increased cell survival. The analysis on the mechanism underlying RBM3-mediated neuroprotection against UV insult showed that RBM3 could substantially block the activation of p38 and JNK signaling pathways. In addition, the overexpression of RBM3 reduced the expression of pro-apoptotic proteins Bax and Bad, leaving the pro-survival protein Bcl-2 unaffected. In conclusion, RBM3 is the key mediator of mild hypothermia-related protection against UV in neuroblastoma cells, and the neuroprotective effect might be exerted through interfering with pro-apoptotic signaling pathways p38 and JNK and regulating pro-apoptotic proteins Bax and Bad.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , Neuroblastoma/metabolismo , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Humanos , MAP Quinasa Quinasa 4/metabolismo , Neuronas/metabolismo , Neuronas/efectos de la radiación , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas de Unión al ARN/genética , Rayos Ultravioleta , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
J Transl Med ; 15(1): 78, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28427417

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) patients with early repolarization (ER) pattern are at higher risk of ventricular arrhythmia, yet the genetic background of this situation has not been well investigated. Here we report novel trigenic mutations detected in a Chinese family of obstructive HCM with ER and short QT syndrome (SQTS). METHODS: Proband and family members underwent detailed medical assessments. DNAs were extracted from peripheral blood leukocytes for genetic screening with next generation method. The functional characterization of the mutation was conducted in TSA201 cells with patch-clamp experiment. RESULTS: The proband was a 52-year-old male who had a ER pattern ECG in inferioral-lateral leads with atrioventricular block and QTc of 356 ms. He also suffered from severe left ventricular hypertrophy and dysfunction. Targeted sequencing revealed trigenic mutations: c.700G>A/p.E234K in DES, c.2966G>A/p.R989H in MYPN, and c.5918G>C/p.R1973P in CACNA1C. All mutations were also detected in his daughter with ER and mild myocardium hypertrophy. The CACNA1C-R1973P mutation caused significant reduction (68.4%) of ICa compared to CACNA1C-WT (n = 14 and 14, P < 0.05). The computer modeling showed that all 3 mutations were highly disease-causing. The proband received the CRT-D (cardiac resynchronizing therapy) implantation, which lowered the left ventricular outflow tract gradient (LVOTG, 124 mmHg pre vs. 27 mmHg post) and restored the LV function (LVEF 40% pre vs. 63% post). CONCLUSIONS: The study reveals a novel CACNA1C mutation underlying the unique ER pattern ECGs with SQTS. It also shows the rare trigenic mutations are the pathogenic substrates for the complicated clinical manifestation in HCM patients.


Asunto(s)
Arritmias Cardíacas/diagnóstico por imagen , Arritmias Cardíacas/genética , Canales de Calcio Tipo L/genética , Cardiomiopatía Hipertrófica/genética , Desmina/genética , Predisposición Genética a la Enfermedad , Proteínas Musculares/genética , Mutación/genética , Secuencia de Aminoácidos , Secuencia de Bases , Canales de Calcio Tipo L/química , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Biología Computacional , Desmina/química , Electrocardiografía , Familia , Femenino , Pruebas Genéticas , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Proteínas Musculares/química , Proteínas Mutantes/química
14.
Sci Rep ; 7: 41738, 2017 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-28134320

RESUMEN

Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-ß1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.


Asunto(s)
Apoptosis , Sistema de Señalización de MAP Quinasas , MicroARNs/genética , Neuroblastoma/genética , Neuroblastoma/metabolismo , Óxido Nítrico/metabolismo , Proteínas de Unión al ARN/metabolismo , Apoptosis/genética , Línea Celular Tumoral , Expresión Génica , Silenciador del Gen , Humanos , Proteínas de Unión al ARN/genética , Temperatura , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA