Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Macromol Rapid Commun ; : e2400400, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981020

RESUMEN

With the continuous development of preventive and therapeutic vaccines, traditional adjuvants cannot provide sufficient immune efficacy and it is of high necessity to develop safe and effective novel nanoparticle-based vaccine adjuvants. α-Tocopherol (TOC) is commonly used in oil-emulsion adjuvant systems as an immune enhancer, yet its bioavailability is limited by poor water solubility. This study aims to develop TOC-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TOC-PLGA NPs) to explore the potential of TOC-PLGA NPs as a novel nanoparticle-immune adjuvant. TOC-PLGA NPs are prepared by a nanoprecipitation method and their physicochemical properties are characterized. It is shown that TOC-PLGA NPs are 110.8 nm, polydispersity index value of 0.042, and Zeta potential of -13.26 mV. The encapsulation efficiency and drug loading of NPs are 82.57% and 11.80%, respectively, and the cumulative release after 35 days of in vitro testing reaches 47%. Furthermore, TOC-PLGA NPs demonstrate a superior promotion effect on RAW 264.7 cell proliferation compared to PLGA NPs, being well phagocytosed and also promoting antigen uptake by macrophages. TOC-PLGA NPs can strongly upregulate the expression of co-stimulatory surface molecules and the secretion of cytokines. In conclusion, TOC-PLGA NPs can be a novel vaccine adjuvant with excellent biocompatibility and significant immune-enhancing activity.

2.
Biomater Sci ; 12(14): 3659-3671, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38860438

RESUMEN

Intravesical instillation is an effective post-treatment for bladder cancer performed by delivering medications directly into the bladder to target the remaining cancer cells. The current study thus aimed to develop porous poly(L-lactide-co-ε-caprolactone) (PLCL) microspheres encapsulated with 10-hydroxycamptothecin (HCPT) via microfluidics to serve as a drug delivery system with persistent floating capacity and sustained HCPT-release property for intravesical instillation. A microfluidic device was designed to fabricate PLCL microspheres and encapsulate HCPT (HCPT-MS) within them; methanol and tridecane were introduced into an oil phase as a co-solvent and pore-forming agent, respectively, to regulate the floating ability of microspheres. The physicochemical properties of the resulting microspheres were characterized, and the floating behavior, release profile and anti-tumor effects of HCPT-MS were investigated. The obtained spherical HCPT-MS were 119.23 µm in size, monodisperse, and featured a porous concave surface and hollow structure. The encapsulation efficiency and drug loading of HCPT within HCPT-MS was around 67% and 4.9%, respectively. HCPT-MS exhibited impressive floating capabilities in water, PBS and artificial urine even in a simulated bladder dynamic environment. These microspheres remained afloat after being subjected to 90 repeated simulated urination processes. The sustained release of HCPT from these floating microspheres lasted for more than 10 days. The IC50 (half maximal inhibitory concentration) of HCPT-MS was calculated to be 52.14 µg mL-1. T24 cells (human bladder cancer cells) when cultured with HCPT-MS at such a concentration were severely inhibited, and the inhibition further enhanced with an increase in culture time. Hence, the feasibility of the current porous and floating HCPT-MS as a formulation for intravesical instillation to deliver medications into the bladder with sustained release and stability was thus substantiated.


Asunto(s)
Camptotecina , Microesferas , Poliésteres , Neoplasias de la Vejiga Urinaria , Camptotecina/administración & dosificación , Camptotecina/análogos & derivados , Camptotecina/química , Camptotecina/farmacología , Poliésteres/química , Porosidad , Humanos , Línea Celular Tumoral , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Administración Intravesical , Liberación de Fármacos , Portadores de Fármacos/química , Animales , Sistemas de Liberación de Medicamentos , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química
3.
J Biomater Sci Polym Ed ; 35(8): 1197-1213, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38421916

RESUMEN

Rapamycin (RAP) is currently being developed as potential antibreast cancer drug. However, its poor solubility completely limits its use. The aim of this study was to develop polyethylene glycol-poly(lactide-co-glycolide) (PEG-PLGA)-based nanoparticles (NPs) to load RAP via microfluidics with an appropriate polyethylene glycol (PEG) content to enhance the bioavailability of RAP. Polydimethylsiloxane (PDMS) chips with a Y-shaped channel were designed to obtain RAP-loaded PEG-PLGA NPs (RAP-PEG-PLGA). The entrapment efficiency (EE) and drug loading (DL) as well as release profile of RAP-PEG-PLGA were evaluated, and their resistance to plasma albumin adsorption of NPs with different PEG contents was evaluated and compared. RAW264.7 and 4T1 cells were used to assess the antiphagocytic and anticancer cells effect of NPs, respectively. RAP-PEG-PLGA of around 124 nm in size were successfully prepared with the EE of 82.0% and DL of 12.3%, and sustained release for around 40 d. A PEG relative content of 10% within the PEG-PLGA molecule was shown superior in resisting protein adsorption. RAP-PEG-PLGA inhibited the growth of breast cancer cells when the concentration was over 10 µg/mL, and the inhibition efficiency was significantly higher than free RAP. Hence, the current RAP-PEG-PLGA could be a potential therapeutic system for breast cancer treatment.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Polietilenglicoles , Sirolimus , Sirolimus/química , Sirolimus/administración & dosificación , Sirolimus/farmacología , Sirolimus/farmacocinética , Polietilenglicoles/química , Animales , Nanopartículas/química , Ratones , Portadores de Fármacos/química , Liberación de Fármacos , Línea Celular Tumoral , Células RAW 264.7 , Tamaño de la Partícula , Precipitación Química , Adsorción , Humanos , Poliésteres
4.
Int J Biol Macromol ; 257(Pt 1): 128596, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052282

RESUMEN

Guided bone regeneration (GBR) is an effective strategy to promote periodontal tissue repair. The current study aimed to develop an injectable gel for GBR, composed of photo-cross-linkable hyaluronic acid and mesoporous bioactive glass nanoparticles (MBGNs) loaded with antibacterial minocycline hydrochloride (MNCl). Hyaluronic acid modified with methacrylic anhydride (MHA) that could be cross-linked under UV irradiation was first synthesized. Dynamic rheological evaluation of MHA under UV was carried out to determine its in-situ gelling feasibility and stability. Morphological and mechanical characterization was performed to determine the optimal concentration of MHA gels. Sol-gel derived MBGNs loaded with MNCl were further incorporated into MHA gels to obtain the injectable drug-loaded MBGN-MNCl/MHA gels. In vitro antibacterial, anti-inflammatory and osteogenic effects of this gel were evaluated. It was shown that the MHA gel obtained from 3 % MHA under UV treatment of 30s exhibited a suitable porous structure with a compressive strength of 100 kPa. MBGNs with particle size of ∼120 nm and mesopores were confirmed by TEM and SEM. MBGNs had a loading capacity of ∼120 mg/g for MNCl, exhibiting a sustained release behavior. The MBGN-MNCl/MHA gel was shown to effectively inhibit the proliferation of Streptococcus mutans and the expression of pro-inflammatory factors IL-6 and TNF-α by macrophages. It could on the other hand significantly promote the expression of osteogenic-related genes ALP, Runx2, OPN, and osterix of MC3T3-E1 cells. In conclusion, the current design using photo-crosslinkable MHA gel embedded with MNCl loaded MBGNs can serve as a promising injectable formulation for GBR treatment of irregular periodontal defects.


Asunto(s)
Nanopartículas , Periodontitis , Humanos , Ácido Hialurónico , Geles , Antibacterianos/farmacología , Nanopartículas/química , Periodontitis/tratamiento farmacológico , Vidrio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...