Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(5): 2151-2166, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505602

RESUMEN

Background: The therapeutic benefits of targeting follicle-stimulating hormone (FSH) receptor in treatment of ovarian cancer are significant, whereas the role of FSH in ovarian cancer progresses and the underlying mechanism remains to be developed. Methods: Tissue microarray of human ovarian cancer, tumor xenograft mouse model, and in vitro cell culture were used to investigate the role of FSH in ovarian carcinogenesis. siRNA, lentivirus and inhibitors were used to trigger the inactivation of genes, and plasmids were used to increase transcription of genes. Specifically, pathological characteristic was assessed by histology and immunohistochemistry (IHC), while signaling pathway was studied using western blot, quantitative RT-PCR, and immunofluorescence. Results: Histology and IHC of human normal ovarian and tumor tissue confirmed the association between FSH and Snail in ovarian cancer metastasis. Moreover, in epithelial ovarian cancer cells and xenograft mice, FSH was showed to promote epithelial mesenchymal transition (EMT) progress and metastasis of ovarian cancer via prolonging the half-life of Snail mRNA in a N6-methyladenine methylation (m6A) dependent manner, which was mechanistically through the CREB/ALKBH5 signaling pathway. Conclusions: These findings indicated that FSH induces EMT progression and ovarian cancer metastasis via CREB/ALKBH5/Snail pathway. Thus, this study provided new insight into the therapeutic strategy of ovarian cancer patients with high level of FSH.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Ováricas , Humanos , Animales , Femenino , Ratones , Línea Celular Tumoral , Neoplasias Ováricas/tratamiento farmacológico , Hormona Folículo Estimulante/metabolismo , Transición Epitelial-Mesenquimal/genética , Desmetilación , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo
2.
Adv Sci (Weinh) ; 10(27): e2302025, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37515378

RESUMEN

YTH domain family 2 (YTHDF2) is the first identified N6-methyladenosine (m6 A) reader that regulates the status of mRNA. It has been reported that overexpressed YTHDF2 promotes carcinogenesis; yet, its role in hepatocellular carcinoma (HCC) is elusive. Herein, it is demonstrated that YTHDF2 is upregulated and can predict poor outcomes in HCC. Decreased ubiquitination levels of YTHDF2 contribute to the upregulation of YTHDF2. Furthermore, heat shock protein 90 beta (HSP90ß) and STIP1 homology and U-box-containing protein 1 (STUB1) physically interact with YTHDF2 in the cytoplasm. Mechanically, the large and small middle domain of HSP90ß is required for its interaction with STUB1 and YTHDF2. HSP90ß inhibits the STUB1-induced degradation of YTHDF2 to elevate the expression of YTHDF2 and to further boost the proliferation and sorafenib resistance of HCC. Moreover, HSP90ß and YTHDF2 are upregulated, while STUB1 is downregulated in HCC tissues. The expression of HSP90ß is positively correlated with the YTHDF2 protein level, whereas the expression of STUB1 is negatively correlated with the protein levels of YTHDF2 and HSP90ß. These findings deepen the understanding of how YTHDF2 is regulated to drive HCC progression and provide potential targets for treating HCC.


Asunto(s)
Carcinoma Hepatocelular , Proteínas HSP90 de Choque Térmico , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas de Unión al ARN/metabolismo , Sorafenib/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación , Regulación hacia Arriba , Proteínas HSP90 de Choque Térmico/metabolismo
3.
Acta Pharmacol Sin ; 44(4): 853-864, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36261513

RESUMEN

Hepatocellular carcinoma (HCC) remains challenging due to the lack of efficient therapy. Promoting degradation of certain cancer drivers has become an innovative therapy. The nuclear transcription factor sine oculis homeobox 1 (SIX1) is a key driver for the progression of HCC. Here, we explored the molecular mechanisms of ubiquitination of SIX1 and whether targeting SIX1 degradation might represent a potential strategy for HCC therapy. Through detecting the ubiquitination level of SIX1 in clinical HCC tissues and analyzing TCGA and GEPIA databases, we found that ubiquitin specific peptidase 1 (USP1), a deubiquitinating enzyme, contributed to the lower ubiquitination and high protein level of SIX1 in HCC tissues. In HepG2 and Hep3B cells, activation of EGFR-AKT signaling pathway promoted the expression of USP1 and the stability of its substrates, including SIX1 and ribosomal protein S16 (RPS16). In contrast, suppression of EGFR with gefitinib or knockdown of USP1 restrained EGF-elevated levels of SIX1 and RPS16. We further revealed that SNS-023 (formerly known as BMS-387032) induced degradation of SIX1 and RPS16, whereas this process was reversed by reactivation of EGFR-AKT pathway or overexpression of USP1. Consequently, inactivation of the EGFR-AKT-USP1 axis with SNS-032 led to cell cycle arrest, apoptosis, and suppression of cell proliferation and migration in HCC. Moreover, we showed that sorafenib combined with SNS-032 or gefitinib synergistically inhibited the growth of Hep3B xenografts in vivo. Overall, we identify that both SIX1 and RPS16 are crucial substrates for the EGFR-AKT-USP1 axis-driven growth of HCC, suggesting a potential anti-HCC strategy from a novel perspective.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Sorafenib/farmacología , Sorafenib/uso terapéutico , Neoplasias Hepáticas/patología , Gefitinib , Proteínas Proto-Oncogénicas c-akt/metabolismo , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB , Proteínas Ribosómicas , Proteínas de Homeodominio/metabolismo
4.
Can J Gastroenterol Hepatol ; 2021: 9990338, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34557456

RESUMEN

Long noncoding RNAs (lncRNAs) have been substantially reported to have critical roles in regulating tumorigenesis in recent years. However, the expression pattern and biological function of SNHG17 in hepatocellular carcinoma (HCC) remain unclear. Bioinformatics analysis and qRT-PCR were performed to detect the expression pattern of SNHG17 in HCC tissues, adjacent nontumorous tissues, and cell lines. The effect of SNHG17 on proliferation, migration, and apoptosis of HCC was investigated by knockdown and overexpressing SNHG17 in HCC cell lines. RNA sequencing was utilized to explore the underlying mechanism. Utilizing publicly available TCGA-LIHC, GSE102079 HCC datasets, and qRT-PCR, we found SNHG17 was significantly upregulated in HCC tissues and cell lines and was notably associated with larger tumor size, poorly differentiation, presence of vascular invasion, and advanced TNM stage. Furthermore, gain- and loss-of-function studies demonstrated that SNHG17 promoted cell proliferation and migration and inhibited apoptosis of HCC. By employing RNA sequencing, we found knockdown of SNHG17 caused 1037 differentially expressed genes, highly enriched in several pathways, including metabolic, PI3K-Akt, cell adhesion, regulation of cell proliferation, and apoptotic pathway; among them, 92 were overlapped with SNHG17-related genes in the TCGA-LIHC dataset. Furthermore, ERH, TBCA, TDO2, and PDK4 were successfully validated and found significantly dysregulated in HCC tissues. Moreover, HCC patients with higher SNHG17 expression had a relatively poor overall survival and disease-free survival, and ERH and PDK4 also played a marked role in the prognosis of HCC. Broadly, our findings illustrate that SNHG17 acts as a noncoding oncogene in HCC progression, suggesting its potential value as a novel target for HCC therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Carcinoma Hepatocelular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , ARN Largo no Codificante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...