Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405908

RESUMEN

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here, we developed a 2-aminopyrimidine-based macrocyclic dual EPHA2/GAK kinase inhibitor as a chemical tool to study the role of these two kinases in viral entry and assembly. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55 as a potent dual EPHA2/GAK inhibitor. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells, mainly via its EPHA2 activity, and is therefore a promising candidate for further optimization of its activity against dengue virus.

2.
Eur J Med Chem ; 254: 115347, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37094449

RESUMEN

Salt-inducible kinases 1-3 (SIK1-3) are key regulators of the LKB1-AMPK pathway and play an important role in cellular homeostasis. Dysregulation of any of the three isoforms has been associated with tumorigenesis in liver, breast, and ovarian cancers. We have recently developed the dual pan-SIK/group I p21-activated kinase (PAK) chemical probe MRIA9. However, inhibition of p21-activated kinases has been associated with cardiotoxicity in vivo, which complicates the use of MRIA9 as a tool compound. Here, we present a structure-based approach involving the back-pocket and gatekeeper residues, for narrowing the selectivity of pyrido[2,3-d]pyrimidin-7(8H)-one-based inhibitors towards SIK kinases, eliminating PAK activity. Optimization was guided by high-resolution crystal structure analysis and computational methods, resulting in a pan-SIK inhibitor, MR22, which no longer exhibited activity on STE group kinases and displayed excellent selectivity in a representative kinase panel. MR22-dependent SIK inhibition led to centrosome dissociation and subsequent cell-cycle arrest in ovarian cancer cells, as observed with MRIA9, conclusively linking these phenotypic effects to SIK inhibition. Taken together, MR22 represents a valuable tool compound for studying SIK kinase function in cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteínas Serina-Treonina Quinasas , Proteínas Quinasas Activadas por AMP/metabolismo , Hígado/metabolismo , Isoformas de Proteínas , Inhibidores de Proteínas Quinasas/farmacología
3.
IUCrJ ; 9(Pt 6): 720-727, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36381143

RESUMEN

Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of the RING-type E3 ubiquitin ligases that play a role in diverse processes from homeostasis and immune response to viral restriction. While TRIM proteins typically harbor an N-terminal RING finger, a B-box and a coiled-coil domain, a high degree of diversity lies in their C termini that contain diverse protein interaction modules, most of which, both structures and their roles in intermolecular interactions, remain unknown. Here, high-resolution crystal structures of the NHL domains of three of the four human TRIM-NHL proteins, namely TRIM2, TRIM3 and TRIM71, are presented. Comparative structural analyses revealed that, despite sharing an evolutionarily conserved six-bladed ß-propeller architecture, the low sequence identities resulted in distinct properties of these interaction domains at their putative binding sites for macromolecules. Interestingly, residues lining the binding cavities represent a hotspot for genetic mutations linked to several diseases. Thus, high sequence diversity within the conserved NHL domains might be essential for differentiating binding partners among TRIM-NHL proteins.

4.
Bioorg Chem ; 129: 106164, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36162288

RESUMEN

The transcription factor nerve growth factor-induced clone B (NGFI-B, Nur77, NR4A1) is an orphan nuclear receptor playing a role in cell survival and apoptosis regulation. Pharmacological Nur77 modulation holds promise for cancer and (neuro-)inflammatory disease treatment. The available Nur77 ligand scaffolds based on highly lipophilic natural products cytosporone B, celastrol and isoalantolactone are inadequate for the development of potent Nur77 modulators with favorable properties as chemical tools and future drugs. By fragment library screening and subsequent modeling for fragment extension, we have obtained a set of new Nur77 ligands offering alternative chemotypes for the development of Nur77 agonists and inverse agonists. Computer-aided fragment extension in a second stage screening yielded a Nur77 agonist with significant activation efficacy and preference over the related NR4A receptors.


Asunto(s)
Neoplasias , Receptores de Esteroides , Humanos , Ligandos , Receptores Nucleares Huérfanos/uso terapéutico , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Apoptosis , Neoplasias/tratamiento farmacológico
5.
Mol Cell ; 82(11): 2006-2020.e8, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35353987

RESUMEN

CK1s are acidophilic serine/threonine kinases with multiple critical cellular functions; their misregulation contributes to cancer, neurodegenerative diseases, and sleep phase disorders. Here, we describe an evolutionarily conserved mechanism of CK1 activity: autophosphorylation of a threonine (T220 in human CK1δ) located at the N terminus of helix αG, proximal to the substrate binding cleft. Crystal structures and molecular dynamics simulations uncovered inherent plasticity in αG that increased upon T220 autophosphorylation. The phosphorylation-induced structural changes significantly altered the conformation of the substrate binding cleft, affecting substrate specificity. In T220 phosphorylated yeast and human CK1s, activity toward many substrates was decreased, but we also identified a high-affinity substrate that was phosphorylated more rapidly, and quantitative phosphoproteomics revealed that disrupting T220 autophosphorylation rewired CK1 signaling in Schizosaccharomyces pombe. T220 is present exclusively in the CK1 family, thus its autophosphorylation may have evolved as a unique regulatory mechanism for this important family.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Quinasa Idelta de la Caseína , Humanos , Fosforilación , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Transducción de Señal , Especificidad por Sustrato , Treonina
6.
J Med Chem ; 65(3): 2288-2296, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34989568

RESUMEN

As a master regulator of neurogenesis, the orphan nuclear receptor tailless homologue (TLX, NR2E1) maintains neuronal stem cell homeostasis by acting as a transcriptional repressor of tumor suppressor genes. It is hence considered as an appealing target for the treatment of neurodegenerative diseases, but a lack of potent TLX modulators as tools to probe pharmacological TLX control hinders further validation of its promising potential. Here, we report the development of a potent TLX agonist based on fragment screening, pharmacophore modeling, and fragment fusion. Pharmacophore similarity of a fragment screening hit and the TLX ligand ccrp2 provided a rational basis for fragment linkage, which resulted in several TLX activator scaffolds. Among them, the fused compound 10 evolved as a valuable TLX agonist tool with submicromolar potency and high selectivity over related nuclear receptors, rendering it suitable for functional studies on TLX.


Asunto(s)
Diseño de Fármacos , Receptores Nucleares Huérfanos/agonistas , Animales , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Células HEK293 , Humanos , Ligandos , Microsomas Hepáticos/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Piperazina/química , Piperazina/metabolismo , Piperazina/farmacología , Unión Proteica , Ratas , Ratas Sprague-Dawley , Relación Estructura-Actividad
7.
J Med Chem ; 64(12): 8727-8738, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34115934

RESUMEN

The ligand-sensing transcription factor tailless homologue (TLX, NR2E1) is an essential regulator of neuronal stem cell homeostasis with appealing therapeutic potential in neurodegenerative diseases and central nervous system tumors. However, knowledge on TLX ligands is scarce, providing an obstacle to target validation and medicinal chemistry. To discover TLX ligands, we have profiled a drug fragment collection for TLX modulation and identified several structurally diverse agonists and inverse agonists of the nuclear receptor. Propranolol evolved as the strongest TLX agonist and promoted TLX-regulated gene expression in human glioblastoma cells. Structure-activity relationship elucidation of propranolol as a TLX ligand yielded a structurally related negative control compound. In functional cellular experiments, we observed an ability of propranolol to counteract glioblastoma cell proliferation and migration, while the negative control had no effect. Our results provide a collection of TLX modulators as initial chemical tools and set of lead compounds and support therapeutic potential of TLX modulation in glioblastoma.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Propranolol/farmacología , Receptores Citoplasmáticos y Nucleares/agonistas , Línea Celular Tumoral , Células HEK293 , Humanos , Estructura Molecular , Receptores Nucleares Huérfanos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA