Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Oncotarget ; 7(18): 25391-407, 2016 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-27058427

RESUMEN

In gastric cancer (GC), the main subtypes (diffuse and intestinal types) differ in pathological characteristics, with diffuse GC exhibiting early disseminative and invasive behaviour. A distinctive feature of diffuse GC is loss of intercellular adhesion. Although widely attributed to mutations in the CDH1 gene encoding E-cadherin, a significant percentage of diffuse GC do not harbor CDH1 mutations. We found that the expression of the actin-modulating cytoskeletal protein, gelsolin, is significantly higher in diffuse-type compared to intestinal-type GCs, using immunohistochemical and microarray analysis. Furthermore, in GCs with wild-type CDH1, gelsolin expression correlated inversely with CDH1 gene expression. Downregulating gelsolin using siRNA in GC cells enhanced intercellular adhesion and E-cadherin expression, and reduced invasive capacity. Interestingly, hepatocyte growth factor (HGF) induced increased gelsolin expression, and gelsolin was essential for HGF-medicated cell scattering and E-cadherin transcriptional repression through Snail, Twist and Zeb2. The HGF-dependent effect on E-cadherin was found to be mediated by interactions between gelsolin and PI3K-Akt signaling. This study reveals for the first time a function of gelsolin in the HGF/cMet oncogenic pathway, which leads to E-cadherin repression and cell scattering in gastric cancer. Our study highlights gelsolin as an important pro-disseminative factor contributing to the aggressive phenotype of diffuse GC.


Asunto(s)
Carcinoma/patología , Gelsolina/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Transducción de Señal/fisiología , Neoplasias Gástricas/patología , Antígenos CD , Cadherinas/metabolismo , Carcinoma/metabolismo , Humanos , Invasividad Neoplásica/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/metabolismo
2.
J Clin Invest ; 125(6): 2293-306, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915584

RESUMEN

Glutaminase (GLS), which converts glutamine to glutamate, plays a key role in cancer cell metabolism, growth, and proliferation. GLS is being explored as a cancer therapeutic target, but whether GLS inhibitors affect cancer cell-autonomous growth or the host microenvironment or have off-target effects is unknown. Here, we report that loss of one copy of Gls blunted tumor progression in an immune-competent MYC-mediated mouse model of hepatocellular carcinoma. Compared with results in untreated animals with MYC-induced hepatocellular carcinoma, administration of the GLS-specific inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide (BPTES) prolonged survival without any apparent toxicities. BPTES also inhibited growth of a MYC-dependent human B cell lymphoma cell line (P493) by blocking DNA replication, leading to cell death and fragmentation. In mice harboring P493 tumor xenografts, BPTES treatment inhibited tumor cell growth; however, P493 xenografts expressing a BPTES-resistant GLS mutant (GLS-K325A) or overexpressing GLS were not affected by BPTES treatment. Moreover, a customized Vivo-Morpholino that targets human GLS mRNA markedly inhibited P493 xenograft growth without affecting mouse Gls expression. Conversely, a Vivo-Morpholino directed at mouse Gls had no antitumor activity in vivo. Collectively, our studies demonstrate that GLS is required for tumorigenesis and support small molecule and genetic inhibition of GLS as potential approaches for targeting the tumor cell-autonomous dependence on GLS for cancer therapy.


Asunto(s)
Carcinoma Hepatocelular/enzimología , Transformación Celular Neoplásica/metabolismo , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Glutaminasa/biosíntesis , Neoplasias Hepáticas Experimentales/enzimología , Sustitución de Aminoácidos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Xenoinjertos , Humanos , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Mutación Missense , Trasplante de Neoplasias , Sulfuros/farmacología , Tiadiazoles/farmacología
3.
Proc Natl Acad Sci U S A ; 111(49): E5282-91, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25422469

RESUMEN

FAT10 (HLA-F-adjacent transcript 10) is a ubiquitin-like modifier that is commonly overexpressed in various tumors. It was found to play a role in mitotic regulation through its interaction with mitotic arrest-deficient 2 (MAD2). Overexpression of FAT10 promotes tumor growth and malignancy. Here, we identified the MAD2-binding interface of FAT10 to be located on its first ubiquitin-like domain whose NMR structure thus was determined. We further proceeded to demonstrate that disruption of the FAT10-MAD2 interaction through mutation of specific MAD2-binding residues did not interfere with the interaction of FAT10 with its other known interacting partners. Significantly, ablation of the FAT10-MAD2 interaction dramatically limited the promalignant capacity of FAT10, including promoting tumor growth in vivo and inducing aneuploidy, proliferation, migration, invasion, and resistance to apoptosis in vitro. Our results strongly suggest that the interaction of FAT10 with MAD2 is a key mechanism underlying the promalignant property of FAT10 and offer prospects for the development of anticancer strategies.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Proteínas Mad2/metabolismo , Neoplasias/metabolismo , Ubiquitinas/metabolismo , Secuencia de Aminoácidos , Animales , Ciclo Celular , Proliferación Celular , Separación Celular , Inestabilidad Cromosómica , Progresión de la Enfermedad , Citometría de Flujo , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
4.
Carcinogenesis ; 35(4): 923-34, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24325913

RESUMEN

FAT10 (HLA-F-adjacent transcript 10) is an ubiquitin-like modifier, which has been implicated in immune response and cancer development. In particular, the hypothesis of FAT10 as a mediator of tumorigenesis stems from its ability to associate with a spindle checkpoint protein Mad2 during mitosis and cause aneuploidy, a hallmark of cancer cells. Furthermore, FAT10 is overexpressed in several carcinomas types, including that of liver and colon. Nevertheless, direct evidence linking FAT10 to cell malignant transformation and progression is lacking. Here, we demonstrate that high FAT10 expression enhanced the proliferative, invasive, migratory and adhesive functions of the transformed cell line, HCT116. These observations were consistently demonstrated in an immortalized, non-tumorigenic liver cell line NeHepLxHT. Importantly, FAT10 can induce malignant transformation as evidenced from the anchorage-independent growth as well as in vivo tumor-forming abilities of FAT10-overexpressing NeHepLxHT cells, whereas in rapidly proliferating HCT116, increased FAT10 further augmented tumor growth. FAT10 was found to activate nuclear factor-κB (NFκB), which in turn upregulated the chemokine receptors CXCR4 and CXCR7. Importantly, small interfering RNA depletion of CXCR7 and CXCR4 attenuated cell invasion of FAT10-overexpressing cells, indicating that the CXCR4/7 is crucial for the FAT10-dependent malignant phenotypes. Taken together, our data reveal novel functions of FAT10 in malignant transformation and progression, via the NFκB-CXCR4/7 pathway.


Asunto(s)
Ubiquitinas/fisiología , Animales , Secuencia de Bases , Adhesión Celular , Línea Celular Transformada , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Cartilla de ADN , Progresión de la Enfermedad , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquitinas/metabolismo
5.
PLoS One ; 7(8): e43594, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22927998

RESUMEN

Gelsolin is a cytoskeletal protein which participates in actin filament dynamics and promotes cell motility and plasticity. Although initially regarded as a tumor suppressor, gelsolin expression in certain tumors correlates with poor prognosis and therapy-resistance. In vitro, gelsolin has anti-apoptotic and pro-migratory functions and is critical for invasion of some types of tumor cells. We found that gelsolin was highly expressed at tumor borders infiltrating into adjacent liver tissues, as examined by immunohistochemistry. Although gelsolin contributes to lamellipodia formation in migrating cells, the mechanisms by which it induces tumor invasion are unclear. Gelsolin's influence on the invasive activity of colorectal cancer cells was investigated using overexpression and small interfering RNA knockdown. We show that gelsolin is required for invasion of colorectal cancer cells through matrigel. Microarray analysis and quantitative PCR indicate that gelsolin overexpression induces the upregulation of invasion-promoting genes in colorectal cancer cells, including the matrix-degrading urokinase-type plasminogen activator (uPA). Conversely, gelsolin knockdown reduces uPA levels, as well as uPA secretion. The enhanced invasiveness of gelsolin-overexpressing cells was attenuated by treatment with function-blocking antibodies to either uPA or its receptor uPAR, indicating that uPA/uPAR activity is crucial for gelsolin-dependent invasion. In summary, our data reveals novel functions of gelsolin in colorectal tumor cell invasion through its modulation of the uPA/uPAR cascade, with potentially important roles in colorectal tumor dissemination to metastatic sites.


Asunto(s)
Neoplasias Colorrectales/patología , Gelsolina/metabolismo , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Línea Celular Tumoral , Fibrinolisina/metabolismo , Gelsolina/deficiencia , Gelsolina/genética , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Humanos , Invasividad Neoplásica , ARN Interferente Pequeño/genética , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...