Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3645, 2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34112779

RESUMEN

Understanding the competition between superconductivity and other ordered states (such as antiferromagnetic or charge-density-wave (CDW) state) is a central issue in condensed matter physics. The recently discovered layered kagome metal AV3Sb5 (A = K, Rb, and Cs) provides us a new playground to study the interplay of superconductivity and CDW state by involving nontrivial topology of band structures. Here, we conduct high-pressure electrical transport and magnetic susceptibility measurements to study CsV3Sb5 with the highest Tc of 2.7 K in AV3Sb5 family. While the CDW transition is monotonically suppressed by pressure, superconductivity is enhanced with increasing pressure up to P1 ≈ 0.7 GPa, then an unexpected suppression on superconductivity happens until pressure around 1.1 GPa, after that, Tc is enhanced with increasing pressure again. The CDW is completely suppressed at a critical pressure P2 ≈ 2 GPa together with a maximum Tc of about 8 K. In contrast to a common dome-like behavior, the pressure-dependent Tc shows an unexpected double-peak behavior. The unusual suppression of Tc at P1 is concomitant with the rapidly damping of quantum oscillations, sudden enhancement of the residual resistivity and rapid decrease of magnetoresistance. Our discoveries indicate an unusual competition between superconductivity and CDW state in pressurized kagome lattice.

2.
Phys Rev E ; 96(1-1): 012103, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29347150

RESUMEN

We study the thermal phase transition of the fourfold degenerate phases (the plaquette and single-stripe states) in the two-dimensional frustrated Ising model on the Shastry-Sutherland lattice using Monte Carlo simulations. The critical Ashkin-Teller-like behavior is identified both in the plaquette phase region and the single-stripe phase region. The four-state Potts critical end points differentiating the continuous transitions from the first-order ones are estimated based on finite-size-scaling analyses. Furthermore, a similar behavior of the transition to the fourfold single-stripe phase is also observed in the anisotropic triangular Ising model. Thus, this work clearly demonstrates that the transitions to the fourfold degenerate states of two-dimensional Ising antiferromagnets exhibit similar transition behavior.

3.
J Phys Condens Matter ; 28(34): 346004, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27356040

RESUMEN

In this work, we study the magnetization behaviors of the classical Ising model on the triangular lattice using Monte Carlo simulations, and pay particular attention to the effect of further-neighbor interactions. Several fascinating spin states are identified to be stabilized in certain magnetic field regions, respectively, resulting in the magnetization plateaus at 2/3, 5/7, 7/9 and 5/6 of the saturation magnetization M S, in addition to the well-known plateaus at 0, 1/3 and 1/2 of M S. The stabilization of these interesting orders can be understood as the consequence of the competition between Zeeman energy and exchange energy.

4.
Phys Rev E ; 93(3): 032114, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27078299

RESUMEN

In this work, we investigate the phase transitions and critical behaviors of the frustrated J(1)-J(2)-J(3) Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second-next-nearest-neighbor interaction J(3) on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J(3) is identified, while the four-state Potts-critical end point [J(3)/J(1)](C) is estimated based on the analytic method reported in earlier work [Jin, Sen, and Sandvik, Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J(3) can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J(3) can stabilize the staggered dimer state via a phase transition of strong first-order character.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...