Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nanotechnology ; 33(3)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638116

RESUMEN

The van der Waals (vdW) heterostructures formed by stacking layered two-dimensional materials can improve the performance of materials and provide more applications. In our paper, six configurations of AlN/MoS2vdW heterostructures were constructed, the most stable structure was obtained by calculating the binding energy. On this basis, the effect of external vertical strain on AlN/MoS2heterostructure was analyzed, the calculated results show that the optimal interlayer distance was 3.593 Å and the band structure was modulated. Then the h-BN intercalation was inserted into the AlN/MoS2heterostructure, by fixing the distance between h-BN and AlN or MoS2, two kinds of models were obtained. Furthermore, the electronic properties of AlN/MoS2heterostructure can be regulated by adding h-BN intercalation layer and adjusting its position. Finally, the optical properties show that the absorption coefficient of AlN/MoS2heterostructure exhibits enhancement characteristic compared with that of the individual monolayers. Meantime, compared with AlN/MoS2, the AlN/h-BN/MoS2shows a redshift effect and the light absorption peak intensity increased, which indicated that h-BN intercalation layer can be used to regulate the electronic and optical properties of AlN/MoS2heterostructure.

2.
Nanotechnology ; 31(37): 375706, 2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32464615

RESUMEN

Blue phosphorene (BlueP) has been widely researched recently as a potential material for novel photocatalytic and electronic devices. In this letter, due to its similar in-plane hexagonal lattice structure to MoS2, BlueP/MoS2 van der Waals heterostructures were built in six configurations. The II-stacking configuration was the most stable due to the lowest binding energy obtained from the calculation results. Furthermore, by controlling the external vertical strain, the geometry structures were optimized and the electronic structures of the BlueP/MoS2 heterostructure were modulated. We found that when the interlayer distance was 3.71 Å, the structure was the most optimized. In addition, as the result of charge transfer at the interlayer, a built-in electric field was formed in the BlueP/MoS2 heterostructure, which explained the formation of the type-II band alignment structure. The optical properties results show that the BlueP/MoS2 heterostructure has a wide optical response range and good light absorption ability, which indicated significant potential for BlueP/MoS2 heterostructure use in the next generation of photovoltaic devices and water-splitting materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...