Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Chem ; 12: 1395222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015542

RESUMEN

Gastrodia elata Blume (G. elata), listed as one of the 34 precious Chinese medicines, servers a dual purpose as both a medicinal herb and a food source. Polysaccharide is the main active ingredient in G. elata, which has pharmacological activities such as immune regulation, anti-oxidation, anti-cancer, anti-aging, neuroprotection and antibacterial activity and so on. The biological activities of G. elata polysaccharide (GPs) is closely related to its chemical structures. However, no a review has synthetically summarized the chemical structures and pharmacological activities of GPs. This study delves into the chemical structures, pharmacological action of GPs, offering insights for the future development an application of these compounds.

2.
Molecules ; 29(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38893431

RESUMEN

BACKGROUND: With the changes in lifestyle and diet structure, the incidence of obesity has increased year by year, and obesity is one of the inducements of many chronic metabolic diseases. Epigallocatechin gallate (EGCG), which is the most abundant component of tea polyphenols, has been used for many years to improve obesity and its complications. Though it has been reported that EGCG can improve obesity through many molecular mechanisms, EGCG may have many mechanisms yet to be explored. In this study, we explored other possible mechanisms through molecular docking and in vitro experiments. METHODS: AutoDock Vina was selected for conducting the molecular docking analysis to elucidate the interaction between EGCG and Notch1, while molecular dynamics simulations were employed to validate this interaction. Then, the new regulation mechanism of EGCG on obesity was verified with in vitro experiments, including a Western blot experiment, immunofluorescence experiment, oil red O staining, and other experiments in 3T3-L1 adipocytes. RESULTS: The molecular docking results showed that EGCG could bind to Notch1 protein through hydrogen bonding. In vitro cell experiments demonstrated that EGCG can significantly reduce the sizes of lipid droplets of 3T3-L1 adipocytes and promote UCP-1 expression by inhibiting the expression of Notch1 in 3T3-L1 adipocytes, thus promoting mitochondrial biogenesis. CONCLUSIONS: In this study, molecular docking and in vitro cell experiments were used to explore the possible mechanism of EGCG to improve obesity by inhibiting Notch1.


Asunto(s)
Adipogénesis , Catequina , Simulación del Acoplamiento Molecular , Receptor Notch1 , Animales , Ratones , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Catequina/análogos & derivados , Catequina/farmacología , Catequina/química , Regulación de la Expresión Génica/efectos de los fármacos , Simulación de Dinámica Molecular , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptor Notch1/metabolismo , Proteína Desacopladora 1/metabolismo
3.
Int J Biol Macromol ; 263(Pt 2): 129944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38311142

RESUMEN

Among the diversified glycan modifications, acylation is one of the most abundant. This modification could be responsible for many of the properties of glycans, such as structural stability and specificity for biological activity. To obtain better insight into the effects of acetylation of glycans on the structure and thermostability of insulin, it is critical to investigate glycans with a high degree of acetylation. An in-depth study of three functional glycans named acetyl-mannan from Dendrobium devonianum (DDAM) was conducted herein by efficient enzymatic depolymerization, and the effect of glycosidic bonds on acetylation modification sites was studied through a molecular dynamics (MD) method, as well as its positive effect on insulin secretion, glucose uptake, and the thermal stability of tertiary structures in vitro. Further study indicated that DDAMs play a hypoglycemic role by sparking the thermostability of the insulin conformation. The hypoglycemic activity displayed a positive correlation with the degree of acetylation in DDAMs. In this work, through the MD method, we confirmed the structure characteristics of DDAMs and provided accurate data support for the structure-activity relationship analysis. Thus, these findings demonstrated that DDAMs might be an exceptional leading compound for the stability of insulin drug.


Asunto(s)
Insulina , Mananos , Simulación de Dinámica Molecular , Revelación , Polisacáridos/química , Hipoglucemiantes/farmacología
4.
Food Chem ; 438: 137986, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38000158

RESUMEN

Glycans in corn silk could interact with co-existing small molecules during its absorption, digestion, and biological process. In order to understand the exact mechanism of action of zeaxanthin, it is critical to investigate the biomolecular interactions, which were necessary to form a glycan-small molecule complex and yet produce the bioactive effect. So far, the in-depth study of these natural interactions has not been fully elucidated. Here, we probed that the molecular interaction between zeaxanthin (ZEA) and glycans from corn silk (CSGs) was driven by enthalpy. More importantly, it was the first time found that CSGs can bind to lipid-soluble ZEA could be binded with CSGs. It was the first report on the thermostability of insulin structure and natural glycans. This study should facilitate our understanding of the interaction between lipid soluble molecules and glycans, and provide a more comprehensive understanding of the nutrient base in food.


Asunto(s)
Hipoglucemiantes , Zea mays , Zea mays/química , Zeaxantinas , Polisacáridos , Seda , Lípidos
5.
Molecules ; 28(20)2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37894597

RESUMEN

The phytochemical investigation of Veratrum mengtzeanum Loes. roots resulted in the isolation and characterization of two novel, namely Mengtzeanines A (1), Mengtzeanines B (2), and eight known steroidal alkaloids (3-10). Their structural properties were assessed though extensive spectroscopic techniques. All constituents 1-10 were analyzed for suppression of NO formation in LPS-induced RAW264.7 macrophages. Among them, constituent 6 (Verazine) showed inhibition against LPS-induced NO production (IC50 = 20.41 µM). Additionally, compound 6 could inhibit the secretion of IL1ß, IL6, and TNFα, and downregulate the productions of iNOS and COX2 in LPS-induced RAW264.7 macrophages. Further experiments revealed that 6 exhibited a potent anti-inflammatory level in LPS-stimulated RAW264.7 macrophages via inhibiting NF-κB, and triggering of Keap1/Nrf2/HO-1 axis, implying that compound 6 may be a promising candidate for treating inflammatory disorders.


Asunto(s)
Alcaloides , Veratrum , Animales , Ratones , Veratrum/química , Proteína 1 Asociada A ECH Tipo Kelch , Lipopolisacáridos/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Antiinflamatorios/farmacología , Alcaloides/farmacología , FN-kappa B/metabolismo , Células RAW 264.7 , Óxido Nítrico/metabolismo
6.
Int J Mol Sci ; 24(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37762316

RESUMEN

Inhibiting the tyrosine kinase activity of epidermal growth factor receptor (EGFR) using small-molecule tyrosine kinase inhibitors (TKIs) or monoclonal antibodies is often ineffective in treating cancers harboring wild-type EGFR. Given the fact that EGFR possesses a kinase-independent pro-survival function, more effective inhibition of EGFR-mediated signals is therefore necessary. In this study, we investigated the effects of using a combination of low-dose nimotuzumab and theasinensin A to evaluate whether the inhibitory effect of nimotuzumab on NCI-H441 cancer cells was enhanced. Here, theasinensin A, a novel epigallocatechin-3-gallate (EGCG) derivative, was identified and its potent anticancer activity against wild-type EGFR NSCLC was demonstrated in vitro; the anticancer activity was induced through degradation of EGFR. Mechanistic studies further revealed that theasinensin A bound directly to the EGFR extracellular domain, which decreased interaction with its ligand EGF in combination with nimotuzumab. Theasinensin A significantly promoted EGFR degradation and repressed downstream survival pathways in combination with nimotuzumab. Meanwhile, treatment with theasinensin A and nimotuzumab prevented xenograft growth, whereas the single agents had limited effect. Thus, the combination therapy of theasinensin A with nimotuzumab is a powerful candidate for treatment of wild-type EGFR cancers.

7.
Molecules ; 28(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37630344

RESUMEN

Coffee fermentation is crucial for flavor and aroma, as microorganisms degrade mucilage and produce metabolites. This study aimed to provide a basis for understanding the impact of microorganisms on Coffea arabica from Yunnan, China, during washed processing. The microbial community structure and differentially changed metabolites (DCMs) of C. arabica beans during washed processing were analyzed. The results indicated that the top five predominant microorganisms at the genera level were Achromobacter, Tatumella, Weissella, Streptococcus, and Trichocoleus for bacteria and Cystofilobasidium, Hanseniaspora, Lachancea, Wickerhamomyces, and Aspergillus for fungi. Meanwhile, the relative content of 115 DCMs in 36 h samples decreased significantly, compared to non-fermentation coffee samples (VIP > 1, p < 0.05, FC < 0.65), and the relative content of 28 DCMs increased significantly (VIP > 1, p < 0.05, FC > 1.5). Furthermore, 17 DCMs showed a strong positive correlation with microorganisms, and 5 DCMs had a strong negative correlation (p < 0.05, |r| > 0.6). Therefore, the interaction and metabolic function of microbiota play a key role in the formation of coffee flavor, and these results help in clarifying the fermentation mechanisms of C. arabica and in controlling and improving the quality of coffee flavor.


Asunto(s)
Coffea , Microbiota , Saccharomycetales , Café , China , Fermentación
8.
Carbohydr Polym ; 302: 120380, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36604058

RESUMEN

Glycans play a crucial role in a variety of physiological and pathological processes. In terms of skin, the sugar chain length, monosaccharide composition and structure of glycans change with age, and thus the changes in glycogens in skin cells are a potential biomarker of aging. The exogenous addition of structurally defined glycans is of great importance for delaying the skin aging process. Fortunately, a functional glycan named manno-oligosaccharide (DOMOS) from Dendrobium officinale was obtained herein by efficient enzymatic depolymerization and exerts anti-aging effects on human skin in vitro and in vivo together with human clinical studies. Further studies show that DOMOS exerts anti-aging effects by triggering the ECM process through a TGF-ß/Smad-SIRT1 signalling pathway. This is the first study to concentrate on the beneficial effects of glycan degradation by a highly specific method on skin aging and provides an all-new solution to the skin aging problem that people are most concerned about.


Asunto(s)
Transducción de Señal , Proteínas Smad , Humanos , Proteínas Smad/metabolismo , Sirtuina 1/metabolismo , Sirtuina 1/farmacología , Envejecimiento , Factor de Crecimiento Transformador beta/metabolismo , Polisacáridos/farmacología
9.
Bioorg Chem ; 128: 106084, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35970070

RESUMEN

Aberrant activation of epidermal growth factor receptor (EGFR) plays a pivotal role in cancer initiation and progression and has gained attention as an anticancer drug target. EGFR monoclonal antibodies have been canonically used in non-small cell lung cancer (NSCLC) treatment. However, a basal level of ligand-independent EGFR signaling pro-survival properties limit the clinical efficacy of EGFR monoclonal antibodies. Therefore, targeting EGFR by inducing degraders is a promising approach towards improving therapeutic efficacy and augmenting the effect of nimotuzumab. Here we describe rational discovery of OTP-3, an oxidized (-)-Epigallocatechin gallate (EGCG) derivative that elicits potent anticancer activity in EGFR wild type NSCLC. Mechanistic studies disclosed that OTP-3 directly binds to EGFR extracellular domain decreases EGF and EGFR binding affinities by combination with nimotuzumab. Molecular docking studies revealed that OTP-3-EGFR is a very stable complex. Further analyses showed that nimotuzumab combined with OTP-3 resulted in significantly promoted EGFR degradation and repressed downstream survival pathways. Accordingly, OTP-3 combined with nimotuzumab significantly inhibits tumor growth through degrading EGFR in vivo. Thus, OTP-3 can also serve as an effective therapeutic agent in NSCLC where it can augment the effects of nimotuzumab, a valuable property for combination agents.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Receptores ErbB , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Simulación del Acoplamiento Molecular , Polifenoles ,
10.
Chem Biol Interact ; 365: 110084, 2022 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-35970427

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the most general malignant tumors. The overexpression of epidermal growth factor receptor (EGFR) is a common marker in NSCLC, and it plays an important role in the proliferation, invasion, and metastasis of cancer cells. At present, drugs developed with EGFR as a target suffer from drug resistance, so it is necessary to study new compounds for the treatment of NSCLC. The active substance in green tea is EGCG, which has anti-cancer effects. In this study, we synthesized dimeric-(-)-epigallocatechin-3-gallate (prodelphinidin B-4-3,3‴-di-O-gallate, PBOG), and explored the effect of PBOG on lung cancer cells. PBOG can inhibit the proliferation and migration of NCI-H1975 cells, promote cell apoptosis, and inhibit cell cycle progression. In addition, PBOG can bind to the EGFR ectodomain protein and change the secondary structure of the protein. At the same time, PBOG decreases the expression of EGFR and downstream protein phosphorylation. Animal experiments confirmed that PBOG can inhibit tumor growth by inhibiting EGFR phosphorylation. Collectively, our study results show that PBOG may induce a decrease in intracellular phosphorylated EGFR expression by binding to the EGFR ectodomain protein, thereby inducing apoptosis and inhibiting cell cycle progression, thus providing a new strategy to treat lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/patología , Catequina/análogos & derivados , Línea Celular Tumoral , Proliferación Celular , Receptores ErbB/metabolismo , Neoplasias Pulmonares/patología , Transducción de Señal
11.
J Nanobiotechnology ; 20(1): 320, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35836236

RESUMEN

BACKGROUND: Nanovaccines have shown the promising potential in controlling and eradicating the threat of infectious diseases worldwide. There has been a great need in developing a versatile strategy to conveniently construct diverse types of nanovaccines and induce potent immune responses. To that end, it is critical for obtaining a potent self-adjuvant platform to assemble with different types of antigens into nanovaccines. RESULTS: In this study, we identified a new natural polysaccharide from the rhizomes of Bletilla striata (PRBS), and used this polysaccharide as a platform to construct diverse types of nanovaccines with potent self-adjuvant property. In the construction process of SARS-CoV-2 nanovaccine, PRBS molecules and RBD protein antigens were assembled into ~ 300 nm nanoparticles by hydrogen bond. For HIV nanovaccine, hydrophobic effect dominantly drove the co-assembly between PRBS molecules and Env expression plasmid into ~ 350 nm nanospheres. Importantly, PRBS can potently activate the behaviors and functions of multiple immune cells such as macrophages, B cells and dendritic cells. Depending on PRBS-mediated immune activation, these self-adjuvant nanovaccines can elicit significantly stronger antigen-specific antibody and cellular responses in vivo, in comparison with their corresponding traditional vaccine forms. Moreover, we also revealed the construction models of PRBS-based nanovaccines by analyzing multiple assembly parameters such as bond energy, bond length and interaction sites. CONCLUSIONS: PRBS, a newly-identified natural polysaccharide which can co-assemble with different types of antigens and activate multiple critical immune cells, has presented a great potential as a versatile platform to develop potent self-adjuvant nanovaccines.


Asunto(s)
COVID-19 , Nanopartículas , Adyuvantes Inmunológicos/química , COVID-19/prevención & control , Humanos , Inmunidad , Nanopartículas/química , Polisacáridos , SARS-CoV-2
12.
Struct Chem ; 33(3): 795-805, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35194353

RESUMEN

Quantum-chemical calculations based on the density functional theory (DFT) at the B3LYP/6-311 + + G(2d,2p)//B3LYP/6-31G(d,p) level were employed to study the relationship between the antioxidant properties and chemical structures of six dendrocandin (DDCD) analogues in the gas phase and two solvents (methanol and water). The hydrogen atom transfer (HAT), electron-transfer-proton-transfer (ET-PT), and sequential proton-loss-electron-transfer (SPLET) mechanisms are explored. The highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), reactivity indices (η, µ, ω, ω +, and ω - ), and molecular electrostatic potentials (MEPs) were also evaluated. The results suggest that the D ring plays an important role in mediating the antioxidant activity of DDCDs. For all the studied compounds, indicating that HAT was identified as the most favorable mechanism, whereas the SPLET mechanism was the most thermodynamically favorable pathway in polar solvents. The results of our study should aid in the development of new or modified antioxidant compounds. Supplementary Information: The online version contains supplementary material available at 10.1007/s11224-022-01895-2.

13.
Bioorg Chem ; 121: 105585, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35183859

RESUMEN

Overexpression of human epidermal growth factor receptor (EGFR) plays an important role in several signaling pathways inside and outside the cell, especially in the processes of cell proliferation, differentiation, and death in various cancers. Due to the complexity of the structure and function of EGFR, research on the fluorescence visualization of EGFR protein visualization has proved challenging. One possible strategy for designing a receptor-targeting fluorescent probe with a switching mechanism is to introduce an environment-sensitive fluorophore into the drug ligand. Based on this strategic molecular design, we introduced two environment-sensitive small molecular fluorophores, dansyl chloride (DNS) and nitrobenzoxadiazole (NBD), to replace the morpholine group of gefitinib, achieving a series of fluorescent molecular probes bearing a switching mechanism. The GN probes exhibited prominent environment sensitivity, suggesting good performance as turn-on EGFR-targeting fluorescent ligands. The representative probe GN3 specifically responded to tumor cells overexpressing EGFR, which was validated with live-cell fluorescence imaging and in vivo xenograft tumor imaging. Ligand-induced EGFR phosphorylation in A431 cells was considerably inhibited by probe GN3, demonstrating that this probe still functions as an EGFR inhibitor. Owing to the turn-on response of GN3 to EGFR in tumor cells, and the competitive replacement behavior to the EGFR inhibitor gefitinib, these probes have the potential to be used for fluorescence imaging of cells overexpressing EGFR.


Asunto(s)
Receptores ErbB , Colorantes Fluorescentes , Línea Celular Tumoral , Colorantes Fluorescentes/química , Colorantes Fluorescentes/farmacología , Gefitinib/farmacología , Humanos , Ligandos , Inhibidores de Proteínas Quinasas/farmacología
14.
Nat Prod Res ; 36(15): 3951-3956, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33749420

RESUMEN

Dendrocandins are characteristic chemical structures of D. officinale and have strong physiological bioactivities. In this study, a dendrocandin analogue (1) has been prepared by total synthesis (9 steps, 12.6% overall yield) in which coupling reaction and Wittig reaction as the key steps. Compound 1 was also evaluated for its anticancer activity in vitro against six human cancer cells (MCF-7, A549, A431, SW480, HepG-2 and HL-60) using MTT assays. Compound 1 showed potent cytotoxicity, with the IC50 value 16.27 ± 0.26 µM. The expression levels of apoptotic proteins indicated that compound 1 can up-regulate the expression of apoptotic proteins, leading to apoptosis. This compound suggested that it's potential as anticancer agent for further development.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular , Relación Estructura-Actividad
15.
Molecules ; 26(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299635

RESUMEN

Lung cancer is one of the most commonly occurring cancer mortality worldwide. The epidermal growth factor receptor (EGFR) plays an important role in cellular functions and has become the new promising target. Natural products and their derivatives with various structures, unique biological activities, and specific selectivity have served as lead compounds for EGFR. D-glucose and EGCG were used as starting materials. A series of glucoside derivatives of EGCG (7-12) were synthesized and evaluated for their in vitro anticancer activity against five human cancer cell lines, including HL-60, SMMC-7721, A-549, MCF-7, and SW480. In addition, we investigated the structure-activity relationship and physicochemical property-activity relationship of EGCG derivatives. Compounds 11 and 12 showed better growth inhibition than others in four cancer cell lines (HL-60, SMMC-7721, A-549, and MCF), with IC50 values in the range of 22.90-37.87 µM. Compounds 11 and 12 decreased phosphorylation of EGFR and downstream signaling protein, which also have more hydrophobic interactions than EGCG by docking study. The most active compounds 11 and 12, both having perbutyrylated glucose residue, we found that perbutyrylation of the glucose residue leads to increased cytotoxic activity and suggested that their potential as anticancer agents for further development.


Asunto(s)
Antineoplásicos , Catequina/análogos & derivados , Proliferación Celular/efectos de los fármacos , Citotoxinas , Glucosa , Simulación del Acoplamiento Molecular , Proteínas de Neoplasias , Neoplasias , Células A549 , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Catequina/síntesis química , Catequina/química , Catequina/farmacología , Citotoxinas/síntesis química , Citotoxinas/química , Citotoxinas/farmacología , Receptores ErbB/biosíntesis , Receptores ErbB/química , Glucosa/análogos & derivados , Glucosa/síntesis química , Glucosa/química , Glucosa/farmacología , Células HL-60 , Humanos , Células MCF-7 , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/química , Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fosforilación/efectos de los fármacos
16.
Cell Biochem Funct ; 39(6): 763-770, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34028068

RESUMEN

Colorectal cancer (CRC) is one of the most common malignant tumours in the world. Recent reports have revealed natural products displayed inhibition on colon cancer potential by suppressing transforming growth factor-ß/Smads induced epidermal-mesenchymal transition (EMT). In this article, 12 kinds of natural berberine analogues were screened for their effects on the inhibition of the colon cancer cells, the results showed that demethyleneberberine (DM-BBR) exhibited an interesting and potential effect on inducing the apoptosis of HCT-116 cells with drug concentrations of 6, 12 and 18 µM. Particularly, DM-BBR reversed the EMT process by inhibiting the expression of p-Smad2 and p-Smad3 in the transforming growth factor-ß/Smads signal pathway, up-regulated pro-apoptotic protein cleaved caspase-9, and blocked cell cycle at the S phase and increasing the expression of cyclin proteins P27 and P21. Taken together, these findings suggested that DM-BBR could promote apoptosis and suppress TGF-ß/Smads induced EMT in the colon cancer cells HCT-116.


Asunto(s)
Antineoplásicos/farmacología , Berberina/análogos & derivados , Neoplasias del Colon/tratamiento farmacológico , Transición Epitelial-Mesenquimal/efectos de los fármacos , Proteína Smad2/antagonistas & inhibidores , Proteína smad3/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Berberina/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HCT116 , Humanos , Estructura Molecular , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Células Tumorales Cultivadas
17.
Anticancer Drugs ; 32(6): 647-656, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33587351

RESUMEN

Triple-negative breast cancer (TNBC) is highly aggressive, with high rates of early relapse and very poor overall prognosis. Amphiregulin (AREG) is the most abundant epidermal growth factor receptor (EGFR) agonist in MDA-MB-231 TNBC cells, whose proliferation can be inhibited by (-)-epigallocatechin gallate (EGCG), a constituent of green tea that is prone to oxidative polymerization. The effect of dimeric-EGCG, a dimer of oxidized and polymerized EGCG, on MDA-MB-231 cell the proliferation warrants further exploration. In the present study, MTT, flow cytometry, migration scratch, transwell, western blotting, and surface plasmon resonance assays were used to evaluate the effect of dimeric-EGCG on MDA-MB-231 cells and explore the underlying mechanism. MDA-MB-231 cell proliferation and migration were significantly inhibited by dimeric-EGCG at concentrations as low as 10 µM. Levels of EGFR and p44/42 MAPK phosphorylation in MDA-MB-231 cells were significantly reduced by treatment with 10 µM dimeric-EGCG (P < 0.01). In addition, the levels of phosphorylation induced by exogenous AREG were also inhibited by dimeric-EGCG (P < 0.01); however, no significant effects of dimeric-EGCG were observed on epidermal growth factor or transforming growth factor-alpha signaling. Surface plasmon resonance analysis demonstrated that 10 µM dimeric-EGCG bound directly to the extracellular domain of EGFR, competitively inhibiting the binding of AREG to EGFR. These results suggest a novel mechanism underlying the inhibitory effect of dimeric-EGCG on MDA-MB-231 cells, with potential application in the development of drugs for the treatment of TNBC.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Catequina/análogos & derivados , Anfirregulina/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dimerización , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Femenino , Humanos , Células MCF-7 , Transducción de Señal/efectos de los fármacos
18.
J Asian Nat Prod Res ; 23(8): 772-780, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32619100

RESUMEN

Two new (-)-epigallocatechin-3-gallate-4ß-triazolopodophyllotoxin conjugates (7 and 8) were synthesized and evaluated for biological activity. Compound 8 showed highly potent anticancer activity against A-549 cell line with IC50 of 2.16 ± 1.02 µM, which displayed the highest selectivity index value (SI = 14.5) in A-549 cells. Molecular docking indicated that compound 8 could bind with the active site of Top-II. Therefore, compound 8 might be a promising candidate for further development.


Asunto(s)
Antineoplásicos , Catequina , Antineoplásicos/farmacología , Catequina/análogos & derivados , Simulación del Acoplamiento Molecular , Estructura Molecular
19.
Int J Mol Sci ; 21(14)2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679647

RESUMEN

We reported for the first time that cationic pillar[6]arene (cPA6) could tightly bind to peptide polymer (MW~20-50 kDa), an artificial substrate for tyrosine (Tyr) phosphorylation, and efficiently inhibit Tyr protein phosphorylation through host-guest recognition. We synthesized a nanocomposite of black phosphorus nanosheets loaded with cPA6 (BPNS@cPA6) to explore the effect of cPA6 on cells. BPNS@cPA6 was able to enter HepG2 cells, induced apoptosis, and inhibited cell proliferation by reducing the level of Tyr phosphorylation. Furthermore, BPNS@cPA6 showed a stronger ability of inhibiting cell proliferation in tumor cells than in normal cells. Our results revealed the supramolecular modulation of enzymatic Tyr phosphorylation by the host-guest recognition of cPA6.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Fosforilación/efectos de los fármacos , Compuestos de Amonio Cuaternario/farmacología , Antineoplásicos/administración & dosificación , Cationes/administración & dosificación , Cationes/farmacología , Portadores de Fármacos/química , Células Hep G2 , Humanos , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Fósforo/química , Compuestos de Amonio Cuaternario/administración & dosificación , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...