Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Biol ; 22(7): e3002705, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950075

RESUMEN

We show here that in the fungus Sordaria macrospora, the meiosis-specific HORMA-domain protein Hop1 is not essential for the basic early events of chromosome axis development, recombination initiation, or recombination-mediated homolog coalignment/pairing. In striking contrast, Hop1 plays a critical role at the leptotene/zygotene transition which is defined by transition from pairing to synaptonemal complex (SC) formation. During this transition, Hop1 is required for maintenance of normal axis structure, formation of SC from telomere to telomere, and development of recombination foci. These hop1Δ mutant defects are DSB dependent and require Sme4/Zip1-mediated progression of the interhomolog interaction program, potentially via a pre-SC role. The same phenotype occurs not only in hop1Δ but also in absence of the cohesin Rec8 and in spo76-1, a non-null mutant of cohesin-associated Spo76/Pds5. Thus, Hop1 and cohesins collaborate at this crucial step of meiotic prophase. In addition, analysis of 4 non-null mutants that lack this transition defect reveals that Hop1 also plays important roles in modulation of axis length, homolog-axis juxtaposition, interlock resolution, and spreading of the crossover interference signal. Finally, unexpected variations in crossover density point to the existence of effects that both enhance and limit crossover formation. Links to previously described roles of the protein in other organisms are discussed.


Asunto(s)
Proteínas Fúngicas , Sordariales , Complejo Sinaptonémico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Sordariales/genética , Sordariales/metabolismo , Complejo Sinaptonémico/metabolismo , Meiosis , Profase Meiótica I , Profase , Mutación
2.
Chromosoma ; 133(2): 93-115, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38730132

RESUMEN

Meiosis is the specialized cellular program that underlies gamete formation for sexual reproduction. It is therefore not only interesting but also a fundamentally important subject for investigation. An especially attractive feature of this program is that many of the processes of special interest involve organized chromosomes, thus providing the possibility to see chromosomes "in action". Analysis of meiosis has also proven to be useful in discovering and understanding processes that are universal to all chromosomal programs. Here we provide an overview of the different historical moments when the gap between observation and understanding of mechanisms and/or roles for the new discovered molecules was bridged. This review reflects also the synergy of thinking and discussion among our three laboratories during the past several decades.


Asunto(s)
Meiosis , Humanos , Animales , Historia del Siglo XX , Historia del Siglo XXI , Historia del Siglo XIX , Cromosomas/genética
3.
Annu Rev Genet ; 57: 1-63, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37788458

RESUMEN

The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Emparejamiento Cromosómico/genética , Meiosis/genética , Cromosomas/genética , ADN , Segregación Cromosómica/genética , Intercambio Genético/genética
4.
5.
Proc Natl Acad Sci U S A ; 119(10): e2123363119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35235450

RESUMEN

During mitosis, from late prophase onward, sister chromatids are connected along their entire lengths by axis-linking chromatin/structure bridges. During prometaphase/metaphase, these bridges ensure that sister chromatids retain a parallel, paranemic relationship, without helical coiling, as they undergo compaction. Bridges must then be removed during anaphase. Motivated by these findings, the present study has further investigated the process of anaphase sister separation. Morphological and functional analyses of mammalian mitoses reveal a three-stage pathway in which interaxis bridges play a prominent role. First, sister chromatid axes globally separate in parallel along their lengths, with concomitant bridge elongation, due to intersister chromatin pushing forces. Sister chromatids then peel apart progressively from a centromere to telomere region(s), step-by-step. During this stage, poleward spindle forces dramatically elongate centromere-proximal bridges, which are then removed by a topoisomerase IIα­dependent step. Finally, in telomere regions, widely separated chromatids remain invisibly linked, presumably by catenation, with final separation during anaphase B. During this stage increased separation of poles and/or chromatin compaction appear to be the driving force(s). Cohesin cleavage licenses these events, likely by allowing bridges to respond to imposed forces. We propose that bridges are not simply removed during anaphase but, in addition, play an active role in ensuring smooth and synchronous microtubule-mediated sister separation. Bridges would thereby be the topological gatekeepers of sister chromatid relationships throughout all stages of mitosis.


Asunto(s)
Anafase , Cromátides , Intercambio de Cromátides Hermanas , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Humanos , Cohesinas
6.
Curr Biol ; 31(21): 4713-4726.e4, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34480856

RESUMEN

Polyploidy is a major driver of evolutionary change. Autopolyploids, which arise by within-species whole-genome duplication, carry multiple nearly identical copies of each chromosome. This presents an existential challenge to sexual reproduction. Meiotic chromosome segregation requires formation of DNA crossovers (COs) between two homologous chromosomes. How can this outcome be achieved when more than two essentially equivalent partners are available? We addressed this question by comparing diploid, neo-autotetraploid, and established autotetraploid Arabidopsis arenosa using new approaches for analysis of meiotic CO patterns in polyploids. We discover that crossover interference, the classical process responsible for patterning of COs in diploid meiosis, is defective in the neo-autotetraploid but robust in the established autotetraploid. The presented findings suggest that, initially, diploid-like interference fails to act effectively on multivalent pairing and accompanying pre-CO recombination interactions and that stable autopolyploid meiosis can emerge by evolution of a "supercharged" interference process, which can now act effectively on such configurations. Thus, the basic interference mechanism responsible for simplifying CO patterns along chromosomes in diploid meiosis has evolved the capability to also simplify CO patterns among chromosomes in autopolyploids, thereby promoting bivalent formation. We further show that evolution of stable autotetraploidy preadapts meiosis to higher ploidy, which in turn has interesting mechanistic and evolutionary implications.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Segregación Cromosómica/genética , Diploidia , Meiosis/genética , Poliploidía
7.
Front Cell Dev Biol ; 9: 684108, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34262901

RESUMEN

RNA interference (RNAi) is a cellular process involving small RNAs that target and regulate complementary RNA transcripts. This phenomenon has well-characterized roles in regulating gene and transposon expression. In addition, Dicer and Argonaute proteins, which are key players of RNAi, also have functions unrelated to gene repression. We show here that in the filamentous Ascomycete Sordaria macrospora, genes encoding the two Dicer (Dcl1 and Dcl2) and the two Argonaute (Sms2 and Qde2) proteins are dispensable for vegetative growth. However, we identified roles for all four proteins in the sexual cycle. Dcl1 and Sms2 are essential for timely and successful ascus/meiocyte formation. During meiosis per se, Dcl1, Dcl2, and Qde2 modulate, more or less severely, chromosome axis length and crossover numbers, patterning and interference. Additionally, Sms2 is necessary both for correct synaptonemal complex formation and loading of the pro-crossover E3 ligase-protein Hei10. Moreover, meiocyte formation, and thus meiotic induction, is completely blocked in the dcl1 dcl2 and dcl1 sms2 null double mutants. These results indicate complex roles of the RNAi machinery during major steps of the meiotic process with newly uncovered roles for chromosomes-axis length modulation and crossover patterning regulation.

8.
Mol Cell ; 79(6): 902-916.e6, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32768407

RESUMEN

A long-standing conundrum is how mitotic chromosomes can compact, as required for clean separation to daughter cells, while maintaining close parallel alignment of sister chromatids. Pursuit of this question, by high resolution 3D fluorescence imaging of living and fixed mammalian cells, has led to three discoveries. First, we show that the structural axes of separated sister chromatids are linked by evenly spaced "mini-axis" bridges. Second, when chromosomes first emerge as discrete units, at prophase, they are organized as co-oriented sister linear loop arrays emanating from a conjoined axis. We show that this same basic organization persists throughout mitosis, without helical coiling. Third, from prophase onward, chromosomes are deformed into sequential arrays of half-helical segments of alternating handedness (perversions), accompanied by correlated kinks. These arrays fluctuate dynamically over <15 s timescales. Together these discoveries redefine the foundation for thinking about the evolution of mitotic chromosomes as they prepare for anaphase segregation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cromosomas/genética , Proteínas de Unión al ADN/genética , Mitosis/genética , Adenosina Trifosfatasas/genética , Anafase/genética , Animales , Proteínas de Ciclo Celular/aislamiento & purificación , Cromátides/genética , Proteínas Cromosómicas no Histona , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/aislamiento & purificación , Imagenología Tridimensional , Mamíferos , Metafase/genética , Profase/genética
9.
Methods Mol Biol ; 2124: 19-35, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277447

RESUMEN

Recombination and pairing are prominent features of meiosis where they play an important role in increasing genetic diversity. In most organisms recombination also plays mechanical roles in mediating pairing of homologous chromosomes during prophase and in ensuring regular segregation of homologous pairs at the first meiotic division. The laboratory directed by D. von Wettstein identified six key steps in the meiotic process: (1) Recombination mediated processes occur in physical and functional linkage with the synaptonemal complex (SC), a highly conserved, meiosis-specific structure that links homologous axes along their lengths. (2) The pairing process involves formation and resolution of chromosomal entanglements/interlockings. (3) The SC normally forms specifically between homologous chromosomes, but in unusual situations can form between nonhomologous chromosomes or regions resulting in two-phase SC formation. (4) In hexaploid common wheat, extensive multivalents form with multiple, pairing partner shifts, indicating homology recognition and SC formation among homoeologs as well as homologs. (5) Linkage between recombination and the SC is revealed by crossover-correlated nodules localized in the SC central region. (6) Modified SCs sometimes play a direct role in homolog segregation, providing the required connection between homologs in absence of crossovers/chiasmata.


Asunto(s)
Emparejamiento Cromosómico/genética , Meiosis/genética , Recombinación Genética , Poliploidía , Triticum/genética , Triticum/ultraestructura
10.
Proc Natl Acad Sci U S A ; 116(25): 12400-12409, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31147459

RESUMEN

A central feature of meiosis is pairing of homologous chromosomes, which occurs in two stages: coalignment of axes followed by installation of the synaptonemal complex (SC). Concomitantly, recombination complexes reposition from on-axis association to the SC central region. We show here that, in the fungus Sordaria macrospora, this critical transition is mediated by robust interaxis bridges that contain an axis component (Spo76/Pds5), DNA, plus colocalizing Mer3/Msh4 recombination proteins and the Zip2-Zip4 mediator complex. Mer3-Msh4-Zip2-Zip4 colocalizing foci are first released from their tight axis association, dependent on the SC transverse-filament protein Sme4/Zip1, before moving to bridges and thus to a between-axis position. Ensuing shortening of bridges and accompanying juxtaposition of axes to 100 nm enables installation of SC central elements at sites of between-axis Mer3-Msh4-Zip2-Zip4 complexes. We show also that the Zip2-Zip4 complex has an intrinsic affinity for chromosome axes at early leptotene, where it localizes independently of recombination, but is dependent on Mer3. Then, later, Zip2-Zip4 has an intrinsic affinity for the SC central element, where it ultimately localizes to sites of crossover complexes at the end of pachytene. These and other findings suggest that the fundamental role of Zip2-Zip4 is to mediate the recombination/structure interface at all post-double-strand break stages. We propose that Zip2-Zip4 directly mediates a molecular handoff of Mer3-Msh4 complexes, from association with axis components to association with SC central components, at the bridge stage, and then directly mediates central region installation during SC nucleation.


Asunto(s)
Recombinación Genética , Sordariales/genética , Cromosomas Fúngicos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Complejo Sinaptonémico/metabolismo
11.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879787

RESUMEN

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Asunto(s)
Intercambio Genético/genética , Intercambio Genético/fisiología , Animales , Núcleo Celular , Segregación Cromosómica , Cromosomas/genética , Cromosomas/fisiología , Simulación por Computador , Femenino , Genética de Población/métodos , Recombinación Homóloga/genética , Humanos , Solanum lycopersicum/genética , Masculino , Meiosis/genética , Recombinación Genética/genética , Complejo Sinaptonémico
12.
Genes Dev ; 31(18): 1880-1893, 2017 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-29021238

RESUMEN

Meiosis is the cellular program by which a diploid cell gives rise to haploid gametes for sexual reproduction. Meiotic progression depends on tight physical and functional coupling of recombination steps at the DNA level with specific organizational features of meiotic-prophase chromosomes. The present study reveals that every step of this coupling is mediated by a single molecule: Asy2/Mer2. We show that Mer2, identified so far only in budding and fission yeasts, is in fact evolutionarily conserved from fungi (Mer2/Rec15/Asy2/Bad42) to plants (PRD3/PAIR1) and mammals (IHO1). In yeasts, Mer2 mediates assembly of recombination-initiation complexes and double-strand breaks (DSBs). This role is conserved in the fungus Sordaria However, functional analysis of 13 mer2 mutants and successive localization of Mer2 to axis, synaptonemal complex (SC), and chromatin revealed, in addition, three further important functions. First, after DSB formation, Mer2 is required for pairing by mediating homolog spatial juxtaposition, with implications for crossover (CO) patterning/interference. Second, Mer2 participates in the transfer/maintenance and release of recombination complexes to/from the SC central region. Third, after completion of recombination, potentially dependent on SUMOylation, Mer2 mediates global chromosome compaction and post-recombination chiasma development. Thus, beyond its role as a recombinosome-axis/SC linker molecule, Mer2 has important functions in relation to basic chromosome structure.


Asunto(s)
Emparejamiento Cromosómico/genética , Proteínas Fúngicas/metabolismo , Recombinación Homóloga/genética , Meiosis/genética , Sordariales/genética , Sumoilación/genética , Complejo Sinaptonémico/metabolismo , Secuencia de Aminoácidos , Cromatina/metabolismo , Secuencia Conservada , Roturas del ADN de Doble Cadena , Evolución Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Dominios Proteicos , Sordariales/metabolismo , Complejo Sinaptonémico/genética
13.
Cell ; 168(6): 977-989.e17, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28262352

RESUMEN

Meiosis is the cellular program that underlies gamete formation. For this program, crossovers between homologous chromosomes play an essential mechanical role to ensure regular segregation. We present a detailed study of crossover formation in human male and female meiosis, enabled by modeling analysis. Results suggest that recombination in the two sexes proceeds analogously and efficiently through most stages. However, specifically in female (but not male), ∼25% of the intermediates that should mature into crossover products actually fail to do so. Further, this "female-specific crossover maturation inefficiency" is inferred to make major contributions to the high level of chromosome mis-segregation and resultant aneuploidy that uniquely afflicts human female oocytes (e.g., giving Down syndrome). Additionally, crossover levels on different chromosomes in the same nucleus tend to co-vary, an effect attributable to global per-nucleus modulation of chromatin loop size. Maturation inefficiency could potentially reflect an evolutionary advantage of increased aneuploidy for human females.


Asunto(s)
Aneuploidia , Cromosomas Humanos , Meiosis , Caracteres Sexuales , Núcleo Celular/genética , Femenino , Gametogénesis , Humanos , Masculino , Recombinación Genética
14.
Semin Cell Dev Biol ; 54: 135-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26927691

RESUMEN

Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.


Asunto(s)
Evolución Biológica , Emparejamiento Cromosómico/genética , Intercambio Genético , Animales , Centro Organizador de los Microtúbulos/metabolismo
15.
Mycologia ; 108(3): 590-602, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26908647

RESUMEN

Peroxisomes are versatile and dynamic organelles that are required for the development of diverse eukaryotic organisms. We demonstrated previously that in the fungus Podospora anserina different peroxisomal functions are required at distinct stages of sexual development, including the initiation and progression of meiocyte (ascus) development and the differentiation and germination of sexual spores (ascospores). Peroxisome assembly during these processes relies on the differential activity of the protein machinery that drives the import of proteins into the organelle, indicating a complex developmental regulation of peroxisome formation and activity. Here we demonstrate that peroxisome dynamics is also highly regulated during development. We show that peroxisomes in P. anserina are highly dynamic and respond to metabolic and environmental cues by undergoing changes in size, morphology and number. In addition, peroxisomes of vegetative and sexual cell types are structurally different. During sexual development peroxisome number increases at two stages: at early ascus differentiation and during ascospore formation. These processes are accompanied by changes in peroxisome structure and distribution, which include a cell-polarized concentration of peroxisomes at the beginning of ascus development, as well as a morphological transition from predominantly spherical to elongated shapes at the end of the first meiotic division. Further, the mostly tubular peroxisomes present from second meiotic division to early ascospore formation again become rounded during ascospore differentiation. Ultimately the number of peroxisomes dramatically decreases upon ascospore maturation. Our results reveal a precise regulation of peroxisome dynamics during sexual development and suggest that peroxisome constitution and function during development is defined by the coordinated regulation of the proteins that control peroxisome assembly and dynamics.


Asunto(s)
Peroxisomas/metabolismo , Podospora/crecimiento & desarrollo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación del Desarrollo de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes del Tipo Sexual de los Hongos , Peroxisomas/genética , Podospora/genética , Podospora/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
16.
Semin Cell Dev Biol ; 54: 149-57, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26877138

RESUMEN

The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination.


Asunto(s)
Emparejamiento Cromosómico/genética , Modelos Biológicos , Recombinación Genética , Sordariales/genética , Proteínas Fúngicas/metabolismo , Complejo Sinaptonémico/metabolismo
17.
Chromosoma ; 125(2): 287-300, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26753761

RESUMEN

Whole genome duplication is a prominent feature of many highly evolved organisms, especially plants. When duplications occur within species, they yield genomes comprising multiple identical or very similar copies of each chromosome ("autopolyploids"). Such genomes face special challenges during meiosis, the specialized cellular program that underlies gamete formation for sexual reproduction. Comparisons between newly formed (neo)-autotetraploids and fully evolved autotetraploids suggest that these challenges are solved by specific restrictions on the positions of crossover recombination events and, thus, the positions of chiasmata, which govern the segregation of homologs at the first meiotic division. We propose that a critical feature in the evolution of these more effective chiasma patterns is an increase in the effective distance of meiotic crossover interference, which plays a central role in crossover positioning. We discuss the findings in several organisms, including the recent identification of relevant genes in Arabidopsis arenosa, that support this hypothesis.


Asunto(s)
Cromosomas de las Plantas/genética , Intercambio Genético , Plantas/genética , Poliploidía , Cromosomas de las Plantas/metabolismo , Evolución Molecular , Meiosis , Plantas/metabolismo
18.
Cell ; 161(5): 1124-1137, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-26000485

RESUMEN

Mammalian mitotic chromosome morphogenesis was analyzed by 4D live-cell and snapshot deconvolution fluorescence imaging. Prophase chromosomes, whose organization was previously unknown, are revealed to comprise co-oriented sister linear loop arrays displayed along a single, peripheral, regularly kinked topoisomerase II/cohesin/condensin II axis. Thereafter, rather than smooth, progressive compaction as generally envisioned, progression to metaphase is a discontinuous process involving chromosome expansion as well as compaction. At late prophase, dependent on topoisomerase II and with concomitant cohesin release, chromosomes expand, axes split and straighten, and chromatin loops transit to a radial disposition around now-central axes. Finally, chromosomes globally compact, giving the metaphase state. These patterns are consistent with the hypothesis that the molecular events of chromosome morphogenesis are governed by accumulation and release of chromosome stress, created by chromatin compaction and expansion. Chromosome state could evolve analogously throughout the cell cycle.


Asunto(s)
Cromosomas de los Mamíferos/metabolismo , Metafase , Mitosis , Adenosina Trifosfatasas/análisis , Animales , Proteínas de Ciclo Celular/análisis , Línea Celular , Proteínas Cromosómicas no Histona/análisis , Cromosomas de los Mamíferos/química , ADN-Topoisomerasas de Tipo II/análisis , Proteínas de Unión al ADN/análisis , Ciervos , Células HeLa , Humanos , Microscopía Fluorescente , Complejos Multiproteicos/análisis , Porcinos , Cohesinas
19.
Artículo en Inglés | MEDLINE | ID: mdl-25986558

RESUMEN

Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Recombinación Genética , Animales , Cromosomas/fisiología , Roturas del ADN de Doble Cadena , Humanos , Complejo Sinaptonémico
20.
Cell Cycle ; 14(3): 305-14, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25590558

RESUMEN

During meiosis, crossover recombination is tightly regulated. A spatial patterning phenomenon known as interference ensures that crossovers are well-spaced along the chromosomes. Additionally, every pair of homologs acquires at least one crossover. A third feature, crossover homeostasis, buffers the system such that the number of crossovers remains steady despite decreases or increases in the number of earlier recombinational interactions. Here we summarize recent work from our laboratory supporting the idea that all 3 of these aspects are intrinsic consequences of a single basic process and suggesting that the underlying logic of this process corresponds to that embodied in a particular (beam-film) model.


Asunto(s)
Intercambio Genético , Homeostasis , Meiosis , Cromosomas/genética , Cromosomas/metabolismo , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...