Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Neural Transm (Vienna) ; 131(1): 59-71, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37507512

RESUMEN

Congenital absence of monoamine oxidase A (MAO-A) activity predisposes to antisocial impulsive behaviour, and the MAOA uVNTR low-expressing genotype (MAOA-L) together with childhood maltreatment is associated with similar phenotypes in males. A possible explanation of how family environment may lead to such behaviour involves DNA methylation. We have assessed MAOA methylation and impulsive/antisocial behaviour in 121 males from the Estonian Children Personality Behaviour and Health Study. Of the 12 CpG sites measured, methylation levels at the locus designated CpG3 were significantly lower in subjects with antisocial behaviour involving police contact. CpG3 methylation was lower in subjects with alcohol use disorder by age 25, but only in MAOA-H genotype. No correlation between MAOA CpG3 methylation levels and adaptive impulsivity was found at age 15, but in MAOA-L genotype a positive correlation appeared by age 18. By age 25, this positive correlation was no longer observed in subjects with better family relationships but had increased further with experience of adversity within the family. MAOA CpG3 methylation had different developmental dynamics in relation to maladaptive impulsivity. At age 18, a positive correlation was observed in MAOA-L genotype with inferior family relationships and a negative correlation was found in MAOA-H with superior home environment; both of these associations had disappeared by age 25. CpG3 methylation was associated with dietary intake of several micronutrients, most notable was a negative correlation with the intake of zinc, but also with calcium, potassium and vitamin E; a positive correlation was found with intake of phosphorus. In conclusion, MAOA CpG3 methylation is related to both maladaptive and adaptive impulsivity in adolescence in MAOA-L males from adverse home environment. By young adulthood, this relationship with maladaptive impulsivity had disappeared but with adaptive impulsivity strengthened. Thus, MAOA CpG3 methylation may serve as a marker for adaptive developmental neuroplasticity in MAOA-L genotype. The mechanisms involved may include dietary factors.


Asunto(s)
Trastorno de Personalidad Antisocial , Ambiente en el Hogar , Adolescente , Adulto , Niño , Humanos , Masculino , Adulto Joven , Trastorno de Personalidad Antisocial/genética , Dieta , Metilación de ADN , Genotipo , Conducta Impulsiva , Monoaminooxidasa/genética
2.
Eur Arch Psychiatry Clin Neurosci ; 274(1): 71-82, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37479914

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation treatment used as an alternative or complementary treatment for various neuropsychiatric disorders, and could be an alternative or add-on therapy to psychostimulants in attention-deficit hyperactivity disorder (ADHD). Previous studies provided some evidence for improvements in cognition and clinical symptoms in pediatric and adult ADHD patients. However, data from multi-center randomized controlled trials (RCTs) for this condition are lacking. Thus, our aim is to evaluate short- and mid-term effects of tDCS in this multi-center, randomized, double blind, and sham-controlled, parallel group clinical trial with a 1:1 randomization ratio. Primary endpoint is the total score of DSM-IV scale of the internationally established Conners' Adult ADHD Rating Scales (German self-report screening version, CAARS-S-SR), at day 14 post-intervention (p.i.) to detect short-term lasting effects analyzed via analyses of covariance (ANCOVAs). In case of significant between-groups differences at day 14 p.i., hierarchically ordered hypotheses on mid-term lasting effects will be investigated by linear mixed models with visit (5 time points), treatment, treatment by visit interaction, and covariates as fixed categorical effects plus a patient-specific visit random effect, using an unstructured covariance structure to model the residual within-patient errors. Positive results of this clinical trial will expand the treatment options for adult ADHD patients with tDCS and provide an alternative or add-on therapy to psychostimulants with a low risk for side effects.Trial Registration The trial was registered on July 29, 2022 in the German Clinical Trials Register (DRKS00028148).


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Estimulación Transcraneal de Corriente Directa , Adulto , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Estimulantes del Sistema Nervioso Central/uso terapéutico , Cognición , Método Doble Ciego , Estudios Multicéntricos como Asunto , Ensayos Clínicos Controlados Aleatorios como Asunto , Estimulación Transcraneal de Corriente Directa/métodos , Resultado del Tratamiento
3.
Stem Cell Res ; 56: 102526, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34492570

RESUMEN

Copy number variants of SLC2A3, which encodes the glucose transporter GLUT3, are associated with several neuropsychiatric and cardiac diseases. Here, we report the successful reprogramming of peripheral blood mononuclear cells from two SLC2A3 duplication and two SLC2A3 deletion carriers and subsequent generation of two transgene-free iPSC clones per donor by Sendai viral transduction. All eight clones represent bona fide hiPSCs with high expression of pluripotency genes, ability to differentiate into cells of all three germ layers and normal karyotype. The generated cell lines will be helpful to enlighten the role of glucometabolic alterations in pathophysiological processes shared across organ boundaries.


Asunto(s)
Células Madre Pluripotentes Inducidas , Diferenciación Celular , Línea Celular , Reprogramación Celular , Variaciones en el Número de Copia de ADN , Estratos Germinativos , Transportador de Glucosa de Tipo 3 , Humanos , Leucocitos Mononucleares
4.
Genes (Basel) ; 12(9)2021 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-34573337

RESUMEN

The cell-cell signaling gene CDH13 is associated with a wide spectrum of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD), autism, and major depression. CDH13 regulates axonal outgrowth and synapse formation, substantiating its relevance for neurodevelopmental processes. Several studies support the influence of CDH13 on personality traits, behavior, and executive functions. However, evidence for functional effects of common gene variation in the CDH13 gene in humans is sparse. Therefore, we tested for association of a functional intronic CDH13 SNP rs2199430 with ADHD in a sample of 998 adult patients and 884 healthy controls. The Big Five personality traits were assessed by the NEO-PI-R questionnaire. Assuming that altered neural correlates of working memory and cognitive response inhibition show genotype-dependent alterations, task performance and electroencephalographic event-related potentials were measured by n-back and continuous performance (Go/NoGo) tasks. The rs2199430 genotype was not associated with adult ADHD on the categorical diagnosis level. However, rs2199430 was significantly associated with agreeableness, with minor G allele homozygotes scoring lower than A allele carriers. Whereas task performance was not affected by genotype, a significant heterosis effect limited to the ADHD group was identified for the n-back task. Heterozygotes (AG) exhibited significantly higher N200 amplitudes during both the 1-back and 2-back condition in the central electrode position Cz. Consequently, the common genetic variation of CDH13 is associated with personality traits and impacts neural processing during working memory tasks. Thus, CDH13 might contribute to symptomatic core dysfunctions of social and cognitive impairment in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Cadherinas/genética , Memoria a Corto Plazo/fisiología , Adulto , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Trastorno por Déficit de Atención con Hiperactividad/psicología , Encéfalo/fisiopatología , Estudios de Casos y Controles , Electroencefalografía , Potenciales Evocados/genética , Función Ejecutiva/fisiología , Femenino , Humanos , Masculino , Personalidad , Polimorfismo de Nucleótido Simple
5.
J Neural Transm (Vienna) ; 128(2): 225-241, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33560471

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have revolutionized the generation of experimental disease models, but the development of protocols for the differentiation of functionally active neuronal subtypes with defined specification is still in its infancy. While dysfunction of the brain serotonin (5-HT) system has been implicated in the etiology of various neuropsychiatric disorders, investigation of functional human 5-HT specific neurons in vitro has been restricted by technical limitations. We describe an efficient generation of functionally active neurons from hiPSCs displaying 5-HT specification by modification of a previously reported protocol. Furthermore, 5-HT specific neurons were characterized using high-end fluorescence imaging including super-resolution microscopy in combination with electrophysiological techniques. Differentiated hiPSCs synthesize 5-HT, express specific markers, such as tryptophan hydroxylase 2 and 5-HT transporter, and exhibit an electrophysiological signature characteristic of serotonergic neurons, with spontaneous rhythmic activities, broad action potentials and large afterhyperpolarization potentials. 5-HT specific neurons form synapses reflected by the expression of pre- and postsynaptic proteins, such as Bassoon and Homer. The distribution pattern of Bassoon, a marker of the active zone along the soma and extensions of neurons, indicates functionality via volume transmission. Among the high percentage of 5-HT specific neurons (~ 42%), a subpopulation of CDH13 + cells presumably designates dorsal raphe neurons. hiPSC-derived 5-HT specific neuronal cell cultures reflect the heterogeneous nature of dorsal and median raphe nuclei and may facilitate examining the association of serotonergic neuron subpopulations with neuropsychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Serotonina , Diferenciación Celular , Humanos , Núcleos del Rafe , Neuronas Serotoninérgicas
6.
J Cell Physiol ; 235(12): 9021-9036, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32372501

RESUMEN

SLC2A3 encodes the predominantly neuronal glucose transporter 3 (GLUT3), which facilitates diffusion of glucose across plasma membranes. The human brain depends on a steady glucose supply for ATP generation, which consequently fuels critical biochemical processes, such as axonal transport and neurotransmitter release. Besides its role in the central nervous system, GLUT3 is also expressed in nonneural organs, such as the heart and white blood cells, where it is equally involved in energy metabolism. In cancer cells, GLUT3 overexpression contributes to the Warburg effect by answering the cell's increased glycolytic demands. The SLC2A3 gene locus at chromosome 12p13.31 is unstable and prone to non-allelic homologous recombination events, generating multiple copy number variants (CNVs) of SLC2A3 which account for alterations in SLC2A3 expression. Recent associations of SLC2A3 CNVs with different clinical phenotypes warrant investigation of the potential influence of these structural variants on pathomechanisms of neuropsychiatric, cardiovascular, and immune diseases. In this review, we accumulate and discuss the evidence how SLC2A3 gene dosage may exert diverse protective or detrimental effects depending on the pathological condition. Cellular states which lead to increased energetic demand, such as organ development, proliferation, and cellular degeneration, appear particularly susceptible to alterations in SLC2A3 copy number. We conclude that better understanding of the impact of SLC2A3 variation on disease etiology may potentially provide novel therapeutic approaches specifically targeting this GLUT.


Asunto(s)
Encéfalo/metabolismo , Variaciones en el Número de Copia de ADN/genética , Metabolismo Energético/fisiología , Transportador de Glucosa de Tipo 3/metabolismo , Animales , Metabolismo Energético/genética , Dosificación de Gen/genética , Transportador de Glucosa de Tipo 3/genética , Humanos , Neuronas/metabolismo
7.
J Neural Transm (Vienna) ; 127(11): 1547-1568, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32377792

RESUMEN

Genetic and molecular mechanisms that play a causal role in mental illnesses are challenging to elucidate, particularly as there is a lack of relevant in vitro and in vivo models. However, the advent of induced pluripotent stem cell (iPSC) technology has provided researchers with a novel toolbox. We conducted a systematic review using the PRISMA statement. A PubMed and Web of Science online search was performed (studies published between 2006-2020) using the following search strategy: hiPSC OR iPSC OR iPS OR stem cells AND schizophrenia disorder OR personality disorder OR antisocial personality disorder OR psychopathy OR bipolar disorder OR major depressive disorder OR obsessive compulsive disorder OR anxiety disorder OR substance use disorder OR alcohol use disorder OR nicotine use disorder OR opioid use disorder OR eating disorder OR anorexia nervosa OR attention-deficit/hyperactivity disorder OR gaming disorder. Using the above search criteria, a total of 3515 studies were found. After screening, a final total of 56 studies were deemed eligible for inclusion in our study. Using iPSC technology, psychiatric disease can be studied in the context of a patient's own unique genetic background. This has allowed great strides to be made into uncovering the etiology of psychiatric disease, as well as providing a unique paradigm for drug testing. However, there is a lack of data for certain psychiatric disorders and several limitations to present iPSC-based studies, leading us to discuss how this field may progress in the next years to increase its utility in the battle to understand psychiatric disease.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno Bipolar , Trastorno Depresivo Mayor , Células Madre Pluripotentes Inducidas , Trastornos Mentales , Trastorno Obsesivo Compulsivo , Humanos , Salud Mental
8.
Mol Psychiatry ; 25(9): 2047-2057, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-30116028

RESUMEN

Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno por Déficit de Atención con Hiperactividad/genética , Exoma/genética , Ligamiento Genético/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Linaje , Secuenciación del Exoma
9.
Am J Med Genet B Neuropsychiatr Genet ; 183(5): 247-257, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31099984

RESUMEN

KCNJ6, encoding a potassium channel subunit, regulates the excitability of dopaminergic neurons and is expressed in attention-deficit/hyperactivity disorder (ADHD)-relevant brain regions. As a potential ADHD risk gene, KCNJ6, therefore, may contribute to the endophenotypic variation of the disorder. The impact of two SNPs, rs7275707 and rs6517442, both located in the transcriptional control region of KCNJ6, on reporter gene expression was explored in cultured cells. The KCNJ6 variants were then tested for association with ADHD and personality traits in a family-based sample (165 affected children) and an adult case-control sample (450 patients, 426 controls). Furthermore, the genotypic influence on performance in an n-back task and a cued continuous performance test (cCPT) was investigated by electroencephalography recordings. Finally, rs6517442 function was assessed by a reward anticipation paradigm using functional magnetic resonance imaging. Different haplotypes of rs7275707 and rs6517442 significantly influenced KCNJ6 gene expression proving their functional relevance on the molecular level. In the family-based children sample rs7275707 was associated with ADHD (p = .038). Moreover, rs7275707 showed association with the personality trait of Reward Dependence (p = .031). In the ADHD group, both rs7275707 and rs6517442 influenced the Go-centroid location in the cCPT and the N200 amplitude in the n-back task. Furthermore, ventral striatal activation was impacted by rs6517442 during reward anticipation. Our data indicate that functional variants of KCNJ6 influence brain activity during reward-related and executive processes supporting the view of a differential, age-dependent modulatory impact of dopamine-related brain processes in ADHD risk.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Recompensa , Regiones no Traducidas 5' , Adulto , Mapeo Encefálico , Estudios de Casos y Controles , Dopamina/metabolismo , Electroencefalografía , Salud de la Familia , Femenino , Haplotipos , Humanos , Imagen por Resonancia Magnética , Masculino , Mutagénesis , Fenotipo , Polimorfismo de Nucleótido Simple , Adulto Joven
10.
J Geriatr Psychiatry Neurol ; 33(1): 59-64, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31203704

RESUMEN

Posterior cortical atrophy (PCA) describes a rare heterogenous neurodegenerative syndrome with early visuospatial and visuoperceptual deficits due to atrophy of parieto-occipital brain regions. Here, we describe the case of a 62-year-old woman showing severe cognitive impairments as well as hemianopsia and all core symptoms of Bálint's syndrome. Years ago, the patient had complained about a "tunnel view" and concentration problems. The diagnostic results point to a case of PCA with underlying Alzheimer pathology. The disease course until diagnosis lasted for 7 years, reflecting the diagnostic difficulties with this still largely unknown syndrome. The unfamiliar symptom presentation including fluctuations in cognitive performance, affective symptoms, cerebrospinal fluid (CSF) biomarkers, which were at first inconspicuous, and a former suspected diagnosis of dissociative pseudodementia, altogether brought considerable uncertainty to the involved health-care professionals. We conclude that cases of "atypical dementia" presenting with visual symptoms, even if appearing unspecific at first, are suspect of PCA. This case report provides an ostensive overview of PCA, including imaging data, CSF-findings, original drawings and handwriting samples from the patient.


Asunto(s)
Atrofia/patología , Corteza Cerebral/fisiología , Enfermedad de Alzheimer/psicología , Corteza Cerebral/patología , Progresión de la Enfermedad , Femenino , Humanos , Persona de Mediana Edad
11.
Am J Psychiatry ; 176(7): 531-542, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31014101

RESUMEN

OBJECTIVE: Neuroimaging studies show structural alterations of various brain regions in children and adults with attention deficit hyperactivity disorder (ADHD), although nonreplications are frequent. The authors sought to identify cortical characteristics related to ADHD using large-scale studies. METHODS: Cortical thickness and surface area (based on the Desikan-Killiany atlas) were compared between case subjects with ADHD (N=2,246) and control subjects (N=1,934) for children, adolescents, and adults separately in ENIGMA-ADHD, a consortium of 36 centers. To assess familial effects on cortical measures, case subjects, unaffected siblings, and control subjects in the NeuroIMAGE study (N=506) were compared. Associations of the attention scale from the Child Behavior Checklist with cortical measures were determined in a pediatric population sample (Generation-R, N=2,707). RESULTS: In the ENIGMA-ADHD sample, lower surface area values were found in children with ADHD, mainly in frontal, cingulate, and temporal regions; the largest significant effect was for total surface area (Cohen's d=-0.21). Fusiform gyrus and temporal pole cortical thickness was also lower in children with ADHD. Neither surface area nor thickness differences were found in the adolescent or adult groups. Familial effects were seen for surface area in several regions. In an overlapping set of regions, surface area, but not thickness, was associated with attention problems in the Generation-R sample. CONCLUSIONS: Subtle differences in cortical surface area are widespread in children but not adolescents and adults with ADHD, confirming involvement of the frontal cortex and highlighting regions deserving further attention. Notably, the alterations behave like endophenotypes in families and are linked to ADHD symptoms in the population, extending evidence that ADHD behaves as a continuous trait in the population. Future longitudinal studies should clarify individual lifespan trajectories that lead to nonsignificant findings in adolescent and adult groups despite the presence of an ADHD diagnosis.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Adolescente , Adulto , Factores de Edad , Trastorno por Déficit de Atención con Hiperactividad/patología , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Estudios de Casos y Controles , Corteza Cerebral/patología , Corteza Cerebral/fisiopatología , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Escalas de Valoración Psiquiátrica , Factores Sexuales , Adulto Joven
12.
Stem Cell Res ; 28: 136-140, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29477591

RESUMEN

Fibroblasts were isolated from a skin biopsy of a clinically diagnosed 51-year-old female attention-deficit/hyperactivity disorder (ADHD) patient carrying a duplication of SLC2A3, a gene encoding neuronal glucose transporter-3 (GLUT3). Patient fibroblasts were infected with Sendai virus, a single-stranded RNA virus, to generate transgene-free human induced pluripotent stem cells (iPSCs). SLC2A3-D2-iPSCs showed expression of pluripotency-associated markers, were able to differentiate into cells of the three germ layers in vitro and had a normal female karyotype. This in vitro cellular model can be used to study the role of risk genes in the pathogenesis of ADHD, in a patient-specific manner.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/patología , Técnicas de Cultivo de Célula/métodos , Duplicación de Gen , Transportador de Glucosa de Tipo 3/genética , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular , Línea Celular , Reprogramación Celular , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Estratos Germinativos/citología , Humanos , Repeticiones de Microsatélite/genética , Persona de Mediana Edad , Mycoplasma/aislamiento & purificación
13.
J Child Psychol Psychiatry ; 58(7): 798-809, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28224622

RESUMEN

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder with profound cognitive, behavioral, and psychosocial impairments with persistence across the life cycle. Our initial genome-wide screening approach for copy number variants (CNVs) in ADHD implicated a duplication of SLC2A3, encoding glucose transporter-3 (GLUT3). GLUT3 plays a critical role in cerebral glucose metabolism, providing energy for the activity of neurons, which, in turn, moderates the excitatory-inhibitory balance impacting both brain development and activity-dependent neural plasticity. We therefore aimed to provide additional genetic and functional evidence for GLUT3 dysfunction in ADHD. METHODS: Case-control association analyses of SLC2A3 single-nucleotide polymorphisms (SNPs) and CNVs were conducted in several European cohorts of patients with childhood and adult ADHD (SNP, n = 1,886 vs. 1,988; CNV, n = 1,692 vs. 1,721). These studies were complemented by SLC2A3 expression analyses in peripheral cells, functional EEG recordings during neurocognitive tasks, and ratings of food energy content. RESULTS: Meta-analysis of all cohorts detected an association of SNP rs12842 with ADHD. While CNV analysis detected a population-specific enrichment of SLC2A3 duplications only in German ADHD patients, the CNV + rs12842 haplotype influenced ADHD risk in both the German and Spanish cohorts. Duplication carriers displayed elevated SLC2A3 mRNA expression in peripheral blood cells and altered event-related potentials reflecting deficits in working memory and cognitive response control, both endophenotypic traits of ADHD, and an underestimation of energy units of high-caloric food. CONCLUSIONS: Taken together, our results indicate that both common and rare SLC2A3 variation impacting regulation of neuronal glucose utilization and energy homeostasis may result in neurocognitive deficits known to contribute to ADHD risk.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Trastorno por Déficit de Atención con Hiperactividad/fisiopatología , Encéfalo/fisiopatología , Función Ejecutiva/fisiología , Transportador de Glucosa de Tipo 3/genética , Adolescente , Adulto , Trastorno por Déficit de Atención con Hiperactividad/sangre , Estudios de Casos y Controles , Niño , Variaciones en el Número de Copia de ADN , Duplicación de Gen , Estudio de Asociación del Genoma Completo , Alemania , Humanos , Noruega , Polimorfismo de Nucleótido Simple , Riesgo , España , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...