Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nature ; 609(7925): 144-150, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850148

RESUMEN

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Asunto(s)
Antitoxinas , Bacteriófagos , Retroelementos , Salmonella typhimurium , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Conformación de Ácido Nucleico , Profagos/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/virología , Sistemas Toxina-Antitoxina/genética
2.
Nat Microbiol ; 5(9): 1119-1133, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32514074

RESUMEN

The interplay between host and pathogen relies heavily on rapid protein synthesis and accurate protein targeting to ensure pathogen destruction. To gain insight into this dynamic interface, we combined Click chemistry with pulsed stable isotope labelling of amino acids in cell culture to quantify the host proteome response during macrophage infection with the intracellular bacterial pathogen Salmonella enterica Typhimurium. We monitored newly synthesized proteins across different host cell compartments and infection stages. Within this rich resource, we detected aberrant trafficking of lysosomal proteases to the extracellular space and the nucleus. We verified that active cathepsins re-traffic to the nucleus and that these are linked to cell death. Pharmacological cathepsin inhibition and nuclear targeting of a cellular cathepsin inhibitor (stefin B) suppressed S. enterica Typhimurium-induced cell death. We demonstrate that cathepsin activity is required for pyroptotic cell death via the non-canonical inflammasome, and that lipopolysaccharide transfection into the host cytoplasm is sufficient to trigger active cathepsin accumulation in the host nucleus and cathepsin-dependent cell death. Finally, cathepsin inhibition reduced gasdermin D expression, thus revealing an unexpected role for cathepsin activity in non-canonical inflammasome regulation. Overall, our study illustrates how resolution of host proteome dynamics during infection can drive the discovery of biological mechanisms at the host-microbe interface.


Asunto(s)
Catepsinas/metabolismo , Muerte Celular/fisiología , Macrófagos/metabolismo , Proteómica , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Animales , Catepsinas/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Cistatina B/antagonistas & inhibidores , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/metabolismo , Lisosomas/metabolismo , Macrófagos/microbiología , Ratones , Péptido Hidrolasas/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Proteoma , Células RAW 264.7 , Infecciones por Salmonella/microbiología
3.
Nature ; 559(7713): 259-263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973719

RESUMEN

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Animales , Benzaldehídos/farmacología , Colistina/farmacología , Combinación de Medicamentos , Interacciones Farmacológicas , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Aditivos Alimentarios/farmacología , Larva/efectos de los fármacos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Filogenia , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Especificidad de la Especie
4.
Nat Microbiol ; 2: 17014, 2017 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-28211844

RESUMEN

Advances in our ability to systematically introduce and track controlled genetic variance in microorganisms have, in the past decade, fuelled high-throughput reverse genetics approaches. When coupled to quantitative readouts, such approaches are extremely powerful at elucidating gene function and providing insights into the underlying pathways and the overall cellular network organization. Yet, until now, all efforts to quantify microbial macroscopic phenotypes have been restricted to monitoring growth in a small number of model microorganisms. We have developed an image analysis software named Iris, which allows for systematic exploration of a number of orthogonal-to-growth processes, including biofilm formation, colony morphogenesis, envelope biogenesis, sporulation and reporter activity. In addition, Iris provides more sensitive growth measurements than currently available software and is compatible with a variety of different microorganisms, as well as with endpoint or kinetic data. We used Iris to reanalyse existing chemical genomics data in Escherichia coli and to perform proof-of-principle screens on colony biofilm formation and morphogenesis of different bacterial species and the pathogenic fungus Candida albicans. We thereby recapitulated existing knowledge but also identified a plethora of additional genes and pathways involved in both processes.


Asunto(s)
Bacterias/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Bacterias/clasificación , Fenómenos Fisiológicos Bacterianos , Biopelículas , Candida albicans/genética , Escherichia coli/genética , Genómica , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Fenotipo
5.
Cell ; 159(7): 1652-64, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25525882

RESUMEN

The cell envelope protects bacteria from their surroundings. Defects in its integrity or assembly are sensed by signal transduction systems, allowing cells to rapidly adjust. The Rcs phosphorelay responds to outer membrane (OM)- and peptidoglycan-related stress in enterobacteria. We elucidated how the OM lipoprotein RcsF, the upstream Rcs component, senses envelope stress and activates the signaling cascade. RcsF interacts with BamA, the major component of the ß-barrel assembly machinery. In growing cells, BamA continuously funnels RcsF through the ß-barrel OmpA, displaying RcsF on the cell surface. This process spatially separates RcsF from the downstream Rcs component, which we show is the inner membrane protein IgaA. The Rcs system is activated when BamA fails to bind RcsF and funnel it to OmpA. Newly synthesized RcsF then remains periplasmic, interacting with IgaA to activate the cascade. Thus RcsF senses envelope damage by monitoring the activity of the Bam machinery.


Asunto(s)
Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Transducción de Señal , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Pared Celular/química , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia
6.
Cell ; 144(1): 143-56, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21185072

RESUMEN

The explosion of sequence information in bacteria makes developing high-throughput, cost-effective approaches to matching genes with phenotypes imperative. Using E. coli as proof of principle, we show that combining large-scale chemical genomics with quantitative fitness measurements provides a high-quality data set rich in discovery. Probing growth profiles of a mutant library in hundreds of conditions in parallel yielded > 10,000 phenotypes that allowed us to study gene essentiality, discover leads for gene function and drug action, and understand higher-order organization of the bacterial chromosome. We highlight new information derived from the study, including insights into a gene involved in multiple antibiotic resistance and the synergy between a broadly used combinatory antibiotic therapy, trimethoprim and sulfonamides. This data set, publicly available at http://ecoliwiki.net/tools/chemgen/, is a valuable resource for both the microbiological and bioinformatic communities, as it provides high-confidence associations between hundreds of annotated and uncharacterized genes as well as inferences about the mode of action of several poorly understood drugs.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Genómica , Escherichia coli/efectos de los fármacos , Eliminación de Gen , Perfilación de la Expresión Génica , Genoma Bacteriano , Mutación
7.
Cell ; 143(7): 1097-109, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21183073

RESUMEN

Growth of the mesh-like peptidoglycan (PG) sacculus located between the bacterial inner and outer membranes (OM) is tightly regulated to ensure cellular integrity, maintain cell shape, and orchestrate division. Cytoskeletal elements direct placement and activity of PG synthases from inside the cell, but precise spatiotemporal control over this process is poorly understood. We demonstrate that PG synthases are also controlled from outside of the sacculus. Two OM lipoproteins, LpoA and LpoB, are essential for the function, respectively, of PBP1A and PBP1B, the major E. coli bifunctional PG synthases. Each Lpo protein binds specifically to its cognate PBP and stimulates its transpeptidase activity, thereby facilitating attachment of new PG to the sacculus. LpoB shows partial septal localization, and our data suggest that the LpoB-PBP1B complex contributes to OM constriction during cell division. LpoA/LpoB and their PBP-docking regions are restricted to γ-proteobacteria, providing models for niche-specific regulation of sacculus growth.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Peptidoglicano/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , División Celular , Pared Celular/metabolismo , Escherichia coli/enzimología , Proteínas de Escherichia coli/química , Lipoproteínas/química , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Dominios y Motivos de Interacción de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...