Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros












Intervalo de año de publicación
1.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891904

RESUMEN

Tooth loss during the lifetime of an individual is common. A strategy to treat partial or complete edentulous patients is the placement of dental implants. However, dental implants are subject to bacterial colonization and biofilm formation, which cause an infection named peri-implantitis. The existing long-term treatments for peri-implantitis are generally inefficient. Thus, an electrical circuit was produced with zirconia (Zr) samples using a hot-pressing technique to impregnate silver (Ag) through channels and holes to create a path by LASER texturing. The obtained specimens were characterized according to vitro cytotoxicity, to ensure ZrAg non-toxicity. Furthermore, samples were inoculated with Staphylococcus aureus using 6.5 mA of alternating current (AC). The current was delivered using a potentiostat and the influence on the bacterial concentration was assessed. Using AC, the specimens displayed no bacterial adhesion (Log 7 reduction). The in vitro results presented in this study suggest that this kind of treatment can be an alternative and promising strategy to treat and overcome bacterial adhesion around dental implants that can evolve to biofilm.


Asunto(s)
Adhesión Bacteriana , Biopelículas , Implantes Dentales , Staphylococcus aureus , Circonio , Implantes Dentales/microbiología , Circonio/química , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Humanos , Estimulación Eléctrica/métodos , Propiedades de Superficie , Periimplantitis/microbiología , Periimplantitis/terapia , Plata/química , Plata/farmacología
2.
Molecules ; 29(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38611727

RESUMEN

The syntheses of Ag-based nanoparticles (NPs) with the assistance of plant extracts have been shown to be environmentally benign and cost-effective alternatives to conventional chemical syntheses. This study discusses the application of Paliurus spina-christi, Juglans regia, Humulus lupulus, and Sambucus nigra leaf extracts for in situ synthesis of Ag-based NPs on cotton fabric modified with citric acid. The presence of NPs with an average size ranging from 57 to 99 nm on the fiber surface was confirmed by FESEM. XPS analysis indicated that metallic (Ag0) and/or ionic silver (Ag2O and AgO) appeared on the surface of the modified cotton. The chemical composition, size, shape, and amounts of synthesized NPs were strongly dependent on the applied plant extract. All fabricated nanocomposites exhibited excellent antifungal activity against yeast Candida albicans. Antibacterial activity was significantly stronger against Gram-positive bacteria Staphylococcus aureus than Gram-negative bacteria Escherichia coli. In addition, 99% of silver was retained on the samples after 24 h of contact with physiological saline solution, implying a high stability of nanoparticles. Cytotoxic activity towards HaCaT and MRC5 cells was only observed for the sample synthetized in the presence of H. lupulus extract. Excellent antimicrobial activity and non-cytotoxicity make the developed composites efficient candidates for medicinal applications.


Asunto(s)
Antiinfecciosos , Nanopartículas , Plata/farmacología , Gossypium , Textiles , Antiinfecciosos/farmacología , Escherichia coli , Extractos Vegetales/farmacología
3.
Biomimetics (Basel) ; 9(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38392117

RESUMEN

Poly(styrene-methyl methacrylate-acrylic acid) photonic crystals (PCs), with five different sizes (170, 190, 210, 230 and 250 nm), were applied onto three plain fabrics, namely polyamide, polyester and cotton. The PC-coated fabrics were analyzed using scanning electronic microscopy and two UV/Vis reflectance spectrophotometric techniques (integrating sphere and scatterometry) to evaluate the PCs' self-assembly along with the obtained spectral and colors characteristics. Results showed that surface roughness of the fabrics had a major influence on the color produced by PCs. Polyamide-coated fabrics were the only samples having an iridescent effect, producing more vivid and brilliant colors than polyester and cotton samples. It was observed that as the angle of incident light increases, a hypsochromic shift in the reflection peak occurs along with the formation of new reflection peaks. Furthermore, color behavior simulations were performed with an illuminant A light source on polyamide samples. The illuminant A simulation showed greener and yellower structural colors than those illuminated with D50. The polyester and cotton samples were analyzed using scatterometry to check for iridescence, which was unseen upon ocular inspection and then proven to be present in these samples. This work allowed a better comprehension of how structural colors and their iridescence are affected by the textile substrate morphology and fiber type.

4.
Biomimetics (Basel) ; 9(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38392139

RESUMEN

Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.

5.
Biomedicines ; 12(2)2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38397963

RESUMEN

Among the adjunctive procedures to accelerate orthodontic tooth movement (OTM), ultrasound (US) is a nonsurgical form of mechanical stimulus that has been explored as an alternative to the currently available treatments. This study aimed to clarify the role of US in OTM by exploring different stimulation parameters and their effects on the biological responses of cells involved in OTM. Human fetal osteoblasts and periodontal ligament fibroblasts cell lines were stimulated with US at 1.0 and 1.5 MHz central frequencies and power densities of 30 and 60 mW/cm2 in continuous mode for 5 and 10 min. Cellular proliferation, metabolic activity and protein expression were analyzed. The US parameters that significantly improved the metabolic activity were 1.0 MHz at 30 mW/cm2 for 5 min and 1.0 MHz at 60 mW/cm2 for 5 and 10 min for osteoblasts; and 1.0 MHz at 30 mW/cm2 for 5 min and 1.5 MHz at 60 mW/cm2 for 5 and 10 min for fibroblasts. By stimulating with these parameters, the expression of alkaline phosphatase was maintained, while osteoprotegerin synthesis was induced after three days of US stimulation. The US stimulation improved the biological activity of both osteoblasts and periodontal ligament fibroblasts, inducing their osteogenic differentiation.

6.
Biomedicines ; 12(1)2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38255285

RESUMEN

Numerous pieces of evidence have supported the therapeutic potential of photobiomodulation (PBM) to modulate bone remodeling on mechanically stimulated teeth, proving PBM's ability to be used as a coadjuvant treatment to accelerate orthodontic tooth movement (OTM). However, there are still uncertainty and discourse around the optimal PBM protocols, which hampers its optimal and consolidated clinical applicability. Given the differential expression and metabolic patterns exhibited in the tension and compression sides of orthodontically stressed teeth, it is plausible that different types of irradiation may be applied to each side of the teeth. In this sense, this study aimed to design and implement an optimization protocol to find the most appropriate PBM parameters to stimulate specific bone turnover processes. To this end, three levels of wavelength (655, 810 and 940 nm), two power densities (5 and 10 mW/cm2) and two regimens of single and multiple sessions within three consecutive days were tested. The biological response of osteoblasts and periodontal ligament (PDL) fibroblasts was addressed by monitoring the PBM's impact on the cellular metabolic activity, as well as on key bone remodeling mediators, including alkaline phosphatase (ALP), osteoprotegerin (OPG) and receptor activator of nuclear factor κ-B ligand (RANK-L), each day. The results suggest that daily irradiation of 655 nm delivered at 10 mW/cm2, as well as 810 and 940 nm light at 5 mW/cm2, lead to an increase in ALP and OPG, potentiating bone formation. In addition, irradiation of 810 nm at 5 mW/cm2 delivered for two consecutive days and suspended by the third day promotes a downregulation of OPG expression and a slight non-significant increase in RANK-L expression, being suitable to stimulate bone resorption. Future studies in animal models may clarify the impact of PBM on bone formation and resorption mediators for longer periods and address the possibility of testing different stimulation periodicities. The present in vitro study offers valuable insights into the effectiveness of specific PBM protocols to promote osteogenic and osteoclastogenesis responses and therefore its potential to stimulate bone formation on the tension side and bone resorption on the compression side of orthodontically stressed teeth.

8.
Nanomaterials (Basel) ; 13(11)2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37299655

RESUMEN

Hospitals and nursing home wards are areas prone to the propagation of infections and are of particular concern regarding the spreading of dangerous viruses and multidrug-resistant bacteria (MDRB). MDRB infections comprise approximately 20% of cases in hospitals and nursing homes. Healthcare textiles, such as blankets, are ubiquitous in hospitals and nursing home wards and may be easily shared between patients/users without an adequate pre-cleaning process. Therefore, functionalizing these textiles with antimicrobial properties may considerably reduce the microbial load and prevent the propagation of infections, including MDRB. Blankets are mainly comprised of knitted cotton (CO), polyester (PES), and cotton-polyester (CO-PES). These fabrics were functionalized with novel gold-hydroxyapatite nanoparticles (AuNPs-HAp) that possess antimicrobial properties, due to the presence of the AuNPs' amine and carboxyl groups, and low propensity to display toxicity. For optimal functionalization of the knitted fabrics, two pre-treatments, four different surfactants, and two incorporation processes were evaluated. Furthermore, exhaustion parameters (time and temperature) were subjected to a design of experiments (DoE) optimization. The concentration of AuNPs-HAp in the fabrics and their washing fastness were critical factors assessed through color difference (ΔE). The best performing knitted fabric was half bleached CO, functionalized using a surfactant combination of Imerol® Jet-B (surfactant A) and Luprintol® Emulsifier PE New (surfactant D) through exhaustion at 70 °C for 10 min. This knitted CO displayed antibacterial properties even after 20 washing cycles, showing its potential to be used in comfort textiles within healthcare environments.

9.
Polymers (Basel) ; 15(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37050344

RESUMEN

Textiles are important components for the development of lightweight and flexible displays useful in smart materials. In particular, halochromic textiles are fibrous materials with a color-changing ability triggered by pH variations mainly based on pH-sensitive dye molecules. Recently, a novel class of 2-aminoimidazole azo dyes was developed with distinct substituent patterns. In this work, silk fabric was functionalized through exhaustion for the first time with one of these dyes (AzoIz.Pip). The halochromic properties of the dye were assessed in an aqueous solution and after silk functionalization. The solutions and the fabrics were thoroughly analyzed by ultraviolet-visible (UV-vis) spectra, color strength (K/S), color difference (∆E), CIE L*a*b* coordinates, and the ultraviolet protection factor (UPF). The dyeing process was optimized, and the halochromic performance (and reversibility) was assessed in universal Britton-Robinson buffers (ranging from pH 3 to 12) and artificial body fluids (acid and alkaline perspiration, and wound exudate). AzoIz.Pip showed vibrant colors and attractive halochromic properties with a hypsochromic shift from blue (557 nm) to magenta (536 nm) in aqueous buffered solutions. Similarly, the functionalized silk showed a shift in wavelength of the maximum K/S value from 590 nm to 560 nm when pH increases. The silk fabric showed a high affinity to AzoIz.Pip, and promoted additional color stabilization of the dye, avoiding color loss as observed when the dye is in solution at alkaline pH after 24 h. The color reversibility was effective up to the fourth cycle and the fastness tests denoted suitable results, except washing fastness. The cytotoxicity of the silk fabric extracts was assessed, depicting reduced viability of HaCaT cells to <70% only when the dye concentration in the fabric is higher or equal to 64 µg·mL-1. Nevertheless, lower concentrations were also very effective for the halochromic performance in silk. These materials can thus be a helpful tool for developing sensors in several sectors such as biomedicine, packaging, filtration, agriculture, protective apparel, sports, camouflage, architecture, and design.

10.
Pharmaceutics ; 15(3)2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-36986787

RESUMEN

The combination of two or more agents capable of acting in synergy has been reported as a valuable tool to fight against pathogens. Silver nanoparticles (AgNPs) present a strong antimicrobial action, although their cytotoxicity for healthy cells at active concentrations is a major concern. Azoimidazole moieties exhibit interesting bioactivities, including antimicrobial activity. In this work, a class of recently described azoimidazoles with strong antifungal activity was conjugated with citrate or polyvinylpyrrolidone-stabilized AgNPs. Proton nuclear magnetic resonance was used to confirm the purity of the compounds before further tests and atomic absorption spectroscopy to verify the concentration of silver in the prepared dispersions. Other analytical techniques elucidate the morphology and stability of AgNPs and corresponding conjugates, namely ultraviolet-visible spectrophotometry, scanning transmission electron microscopy and dynamic light scattering analysis. The synergistic antimicrobial activity of the conjugates was assessed through a checkerboard assay against yeasts (Candida albicans and Candida krusei) and bacteria (Staphylococcus aureus and Escherichia coli). The conjugates showed improved antimicrobial activity against all microorganisms, in particular towards bacteria, with concentrations below their individual minimal inhibitory concentration (MIC). Furthermore, some combinations were found to be non-cytotoxic towards human HaCaT cells.

11.
Chem Commun (Camb) ; 59(19): 2791-2794, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36789540

RESUMEN

A novel route is described to obtain 2-aminoimidazole azo dyes with a unique substituent pattern in the heteroaryl unit that provides halochromic properties, exhibiting vibrant colours that change from magenta to deep blue. Potent antimicrobial properties against infectious yeasts were demonstrated. No cytotoxicity was detected for concentrations lower than 16 µg mL-1.


Asunto(s)
Compuestos Azo , Colorantes , Imidazoles , Concentración de Iones de Hidrógeno
12.
ACS Appl Nano Mater ; 5(3): 3030-3064, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36568315

RESUMEN

Nanotechnology has expanded into a broad range of clinical applications. In particular, metal nanoparticles (MNPs) display unique antimicrobial properties, a fundamental function of novel medical devices. The combination of MNPs with commercial antimicrobial drugs (e.g., antibiotics, antifungals, and antivirals) may offer several opportunities to overcome some disadvantages of their individual use and enhance effectiveness. MNP conjugates display multiple advantages. As drug delivery systems, the conjugates can extend the circulation of the drugs in the body, facilitate intercellular targeting, improve drug stabilization, and possess superior delivery. Concomitantly, they reduce the required drug dose, minimize toxicity, and broaden the antimicrobial spectrum. In this work, the common strategies to combine MNPs with clinically used antimicrobial agents are underscored. Furthermore, a comprehensive survey about synergistic antimicrobial effects, the mechanism of action, and cytotoxicity is depicted.

13.
ACS Appl Polym Mater ; 4(5): 3908-3918, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-36568575

RESUMEN

Polyester (PET) fabrics are widely applied in functional textiles due to their outstanding properties such as high strength, dimensional stability, high melting point, low cost, recyclability, and flexibility. Nevertheless, the lack of polar groups in the PET structure makes its coloration and functionalization difficult. The present work reports the one-step in situ synthesis of copper nanoparticles (CuNPs) onto the PET fabric employing sodium hypophosphate and ascorbic acid as reducing and stabilizing agents, at acidic (pH 2) and alkaline pH (pH 11). This synthesis (i) used safer reagents when compared with traditional chemicals for CuNP production, (ii) was performed at a moderate temperature (85 °C), and (iii) used no protective inert gas. The dielectric barrier discharge (DBD) plasma was used as an environmentally friendly method for the surface functionalization of PET to enhance the adhesion of CuNPs. The size of the CuNPs in an alkaline reaction (76-156 nm for not treated and 93.4-123 nm for DBD plasma-treated samples) was found to be smaller than their size in acidic media (118-310 nm for not treated and 249-500 nm for DBD plasma-treated samples), where the DBD plasma treatment promoted some agglomeration. In acidic medium, metallic copper was obtained, and a reddish color became noticeable in the textile. In alkaline medium, copper(I) oxide (Cu2O) was detected, and the PET samples exhibited a yellow color. The PET samples with CuNPs presented improved ultraviolet protection factor values. Finally, a minimal concentration of copper salt was studied to obtain the optimized antibacterial effect against Staphylococcus aureus and Escherichia coli. The functionalized samples showed strong antibacterial efficacy using low-concentration solutions in the in situ synthesis (2.0 mM of copper salt) and even after five washing cycles. The DBD plasma treatment improved the antibacterial action of the samples prepared in the alkaline medium.

14.
Gels ; 8(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36005090

RESUMEN

Laboratories and industries that handle chemicals are ubiquitously prone to leakages. These may occur in storage rooms, cabinets or even in temporary locations, such as workbenches and shelves. A relevant number of these chemicals are corrosive, thus commercial products already exist to prevent material damage and injuries. One strategy consists of the use of absorbing mats, where few display neutralizing properties, and even less a controlled neutralization. Nevertheless, to the authors' knowledge, the commercially available neutralizing mats are solely dedicated to neutralizing acid or alkali solutions, never both. Therefore, this work describes the development and proof of a completely novel concept, where a dual component active mat (DCAM) is able to perform a controlled simultaneous neutralization of acid and alkali leakages by using microencapsulated active components. Moreover, its active components comprise food-grade ingredients, embedded in nonwoven polypropylene. The acid neutralizing mats contain sodium carbonate (Na2CO3) encapsulated in sodium alginate microcapsules (MC-ASC). Alkali neutralizing mats possess commercial encapsulated citric acid in hydrogenated palm oil (MIRCAP CT 85-H). A DCAM encompasses both MC-ASC and MIRCAP CT 85-H and was able to neutralize solutions up to 10% (v/v) of hydrochloric acid (HCl) and sodium hydroxide (NaOH). The efficacy of the neutralization was assessed by direct titration and using pH strip measurement tests to simulate the leakages. Due to the complexity of neutralization efficacy evaluation based solely on pH value, a thorough conductivity study was performed. DCAM reduced the conductivity of HCl and NaOH (1% and 2% (v/v)) in over 70%. The composites were characterized by scanning electron microscopy (SEM), differential calorimetry (DSC) and thermogravimetric analysis (TGA). The size of MC-ASC microcapsules ranged from 2 µm to 8 µm. Finally, all mat components displayed thermal stability above 150 °C.

15.
Nanomaterials (Basel) ; 12(15)2022 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-35893507

RESUMEN

Growing demand for sustainable and green technologies has turned industries and research toward the more efficient utilization of natural and renewable resources. In an effort to tackle this issue, we developed an antibacterial textile nanocomposite material based on cotton and peat fibers with immobilized Cu-based nanostructures. In order to overcome poor wettability and affinity for Cu2+-ions, the substrate was activated by corona discharge and coated with the biopolymer chitosan before the in situ synthesis of nanostructures. Field emission scanning electron microscopy (FESEM) images show that the application of gallic or ascorbic acid as green reducing agents resulted in the formation of Cu-based nanosheets and mostly spherical nanoparticles, respectively. X-ray photoelectron spectroscopy (XPS) analysis revealed that the formed nanostructures consisted of Cu2O and CuO. A higher-concentration precursor solution led to higher copper content in the nanocomposites, independent of the reducing agent and chitosan deacetylation degree. Most of the synthesized nanocomposites provided maximum reduction of the bacteria Escherichia coli and Staphylococcus aureus. A combined modification using chitosan with a higher deacetylation degree, a 1 mM solution of CuSO4 solution, and gallic acid resulted in an optimal textile nanocomposite with strong antibacterial activity and moderate Cu2+-ion release in physiological solutions. Finally, the Cu-based nanostructures partially suppressed the biodegradation of the textile nanocomposite in soil.

16.
Biology (Basel) ; 11(6)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35741461

RESUMEN

This study reports the numerical and experimental characterization of a standard immobilization system currently being used to treat simple oblique bone fractures of femoral diaphyses. The procedure focuses on the assessment of the mechanical behavior of a bone stabilized with a dynamic compression plate (DCP) in a neutralization function, associated to a lag screw, fastened with surgical screws. The non-linear behavior of cortical bone tissue was revealed through four-point bending tests, from which damage initiation and propagation occurred. Since screw loosening was visible during the loading process, damage parameters were measured experimentally in independent pull-out tests. A realistic numerical model of the DCP-femur setup was constructed, combining the evaluated damage parameters and contact pairs. A mixed-mode (I+II) trapezoidal damage law was employed to mimic the mechanical behavior of both the screw-bone interface and bone fractures. The numerical model replicated the global behavior observed experimentally, which was visible by the initial stiffness and the ability to preview the first loading peak, and bone crack satisfactorily.

17.
Artículo en Inglés | MEDLINE | ID: mdl-35457722

RESUMEN

Almost two years have passed since COVID-19 was officially declared a pandemic by the World Health Organization. However, it still holds a tight grasp on the entire human population. Several variants of concern, one after another, have spread throughout the world. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) omicron variant may become the fastest spreading virus in history. Therefore, it is more than evident that the use of personal protective equipment (PPE) will continue to play a pivotal role during the current pandemic. This work depicts an integrative approach attesting to the effectiveness of ultra-violet-C (UV-C) energy density for the sterilization of personal protective equipment, in particular FFP2 respirators used by the health care staff in intensive care units. It is increasingly clear that this approach should not be limited to health care units. Due to the record-breaking spreading rates of SARS-CoV-2, it is apparent that the use of PPE, in particular masks and respirators, will remain a critical tool to mitigate future pandemics. Therefore, similar UV-C disinfecting rooms should be considered for use within institutions and companies and even incorporated within household devices to avoid PPE shortages and, most importantly, to reduce environmental burdens.


Asunto(s)
COVID-19 , Dispositivos de Protección Respiratoria , COVID-19/epidemiología , COVID-19/prevención & control , Hospitales , Humanos , Equipo de Protección Personal , Portugal , SARS-CoV-2 , Ventiladores Mecánicos
18.
Materials (Basel) ; 15(8)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35454546

RESUMEN

The application of light-emitting diodes (LEDs) has been gaining popularity over the last decades. LEDs have advantages compared to traditional light sources in terms of lifecycle, robustness, compactness, flexibility, and the absence of non-hazardous material. Combining these advantages with the possibility of emitting Ultraviolet C (UVC) makes LEDs serious candidates for light sources in decontamination systems. Nevertheless, it is unclear if they present better decontamination effectiveness than traditional mercury vapor lamps. Hence, this research uses a systematic literature review (SLR) to enlighten three aspects: (1) UVC LEDs' application according to the field, (2) UVC LEDs' application in terms of different biological indicators, and (3) the decontamination effectiveness of UVC LEDs in comparison to conventional lamps. UVC LEDs have spread across multiple areas, ranging from health applications to wastewater or food decontamination. The UVC LEDs' decontamination effectiveness is as good as mercury vapor lamps. In some cases, LEDs even provide better results than conventional mercury vapor lamps. However, the increase in the targets' complexity (e.g., multilayers or thicker individual layers) may reduce the UVC decontamination efficacy. Therefore, UVC LEDs still require considerable optimization. These findings are stimulating for developing industrial or final users' applications.

19.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335469

RESUMEN

Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release. In particular, the functionalization of polyester (PES) fabric with antimicrobial agents is a formulation in high demand in medical textiles. However, the lack of functional groups on PES fabric hinders the development of cost-effective, durable systems that allow a controlled release of antimicrobial agents. In this work, PES fabric was functionalized with AgNPs using one or two biocompatible layers of chitosan or hexamethyldisiloxane (HMDSO). The addition of organo-matrices stabilized the AgNPs onto the fabrics, protected AgNPs from further oxidation, and controlled their release. In addition, the layered samples were efficient against Staphylococcus aureus and Escherichia coli. The sample with two layers of chitosan showed the highest efficacy against S. aureus (log reduction of 2.15 ± 1.08 after 3 h of contact). Against E. coli, the sample with two layers of chitosan showed the best properties. Chitosan allowed to control the antimicrobial activity of AgNPs, avoid the complete loss of AgNPs after washings and act in synergy with AgNPs. After 3 h of incubation, this sample presented a log reduction of 4.81, and 7.27 of log reduction after 5 h of incubation. The antimicrobial results after washing showed a log reduction of 3.47 and 4.88 after 3 h and 5 h of contact, respectively. Furthermore, the sample with a final layer of HMDSO also presented a controlled antimicrobial effect. The antimicrobial effect was slower than the sample with just an initial layer of HMDSO, with a log reduction of 4.40 after 3 h of incubation (instead of 7.22) and 7.27 after 5 h. The biocompatibility of the composites was confirmed through the evaluation of their cytotoxicity towards HaCaT cells (cells viability > 96% in all samples). Therefore, the produced nanocomposites could have interesting applications in medical textiles once they present controlled antimicrobial properties, high biocompatibility and avoid the complete release of AgNPs to the environment.

20.
Nanomaterials (Basel) ; 12(6)2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35335819

RESUMEN

Nanotechnology is a powerful tool for engineering functional materials that has the potential to transform textiles into high-performance, value-added products. In recent years, there has been considerable interest in the development of functional textiles using metal nanoparticles (MNPs). The incorporation of MNPs in textiles allows for the obtention of multifunctional properties, such as ultraviolet (UV) protection, self-cleaning, and electrical conductivity, as well as antimicrobial, antistatic, antiwrinkle, and flame retardant properties, without compromising the inherent characteristics of the textile. Environmental sustainability is also one of the main motivations in development and innovation in the textile industry. Thus, the synthesis of MNPs using ecofriendly sources, such as polysaccharides, is of high importance. The main functions of polysaccharides in these processes are the reduction and stabilization of MNPs, as well as the adhesion of MNPs onto fabrics. This review covers the major research attempts to obtain textiles with different functional properties using polysaccharides and MNPs. The main polysaccharides reported include chitosan, alginate, starch, cyclodextrins, and cellulose, with silver, zinc, copper, and titanium being the most explored MNPs. The potential applications of these functionalized textiles are also reported, and they include healthcare (wound dressing, drug release), protection (antimicrobial activity, UV protection, flame retardant), and environmental remediation (catalysts).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...