Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 191, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604450

RESUMEN

The bald eagle (Haliaeetus leucocephalus) is a culturally and ecologically vital species in North America that embodies conservation success but continues to face threats that include emerging pathogens. The introduction of A/goose/Guangdong/1/1996 lineage highly pathogenic (HP) clade 2.3.4.4b H5N1 influenza A virus (IAV) in North America in late 2021 resulted in high rates of mortality among bald eagles. Here we show an alarming rate of bald eagle nest failure and mortality attributed to HP IAV. We documented fatal, systemic HP IAV infection in breeding adult and nestling bald eagles along the southeastern U.S. coast. Concurrently, annual bald eagle nest surveys in Georgia and Florida revealed a precipitous drop in success in coastal counties compared with previous years, portending negative impacts on population recruitment. As an apex predator and efficient scavenger, it is likely that bald eagles become infected through consumption of infected waterfowl. These results and similar reports of raptor mortality in Europe, Asia, and Africa, indicate a clear threat to raptor health. The possible long-term persistence of HP H5N1 IAV in North America poses an impending threat to bald eagle populations not only related to direct mortality but also decreased recruitment and warrants continued efforts to understand these potential impacts.


Asunto(s)
Águilas , Subtipo H5N1 del Virus de la Influenza A , Animales , América del Norte/epidemiología , Florida , Georgia
2.
Neuroimage ; 256: 119191, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35413447

RESUMEN

Transcranial magnetic stimulation (TMS) is used in several FDA-approved treatments and, increasingly, to treat neurological disorders in off-label uses. However, the mechanism by which TMS causes physiological change is unclear, as are the origins of response variability in the general population. Ideally, objective in vivo biomarkers could shed light on these unknowns and eventually inform personalized interventions. Continuous theta-burst stimulation (cTBS) is a form of TMS observed to reduce motor evoked potentials (MEPs) for 60 min or longer post-stimulation, although the consistency of this effect and its mechanism continue to be under debate. Here, we use glutamate-weighted chemical exchange saturation transfer (gluCEST) magnetic resonance imaging (MRI) at ultra-high magnetic field (7T) to measure changes in glutamate concentration at the site of cTBS. We find that the gluCEST signal in the ipsilateral hemisphere of the brain generally decreases in response to cTBS, whereas consistent changes were not detected in the contralateral region of interest (ROI) or in subjects receiving sham stimulation.


Asunto(s)
Corteza Motora , Estimulación Magnética Transcraneal , Potenciales Evocados Motores/fisiología , Ácido Glutámico , Humanos , Imagen por Resonancia Magnética , Corteza Motora/diagnóstico por imagen , Corteza Motora/fisiología , Estimulación Magnética Transcraneal/métodos
3.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34244340

RESUMEN

Recent work has combined cognitive neuroscience and control theory to make predictions about cognitive control functions. Here, we test a link between whole-brain theories of semantics and the role of the left inferior frontal gyrus (LIFG) in controlled language performance using network control theory (NCT), a branch of systems engineering. Specifically, we examined whether two properties of node controllability, boundary and modal controllability, were linked to semantic selection and retrieval on sentence completion and verb generation tasks. We tested whether the controllability of the left IFG moderated language selection and retrieval costs and the effects of continuous θ burst stimulation (cTBS), an inhibitory form of transcranial magnetic stimulation (TMS) on behavior in 41 human subjects (25 active, 16 sham). We predicted that boundary controllability, a measure of the theoretical ability of a node to integrate and segregate brain networks, would be linked to word selection in the contextually-rich sentence completion task. In contrast, we expected that modal controllability, a measure of the theoretical ability of a node to drive the brain into specifically hard-to-reach states, would be linked to retrieval on the low-context verb generation task. Boundary controllability was linked to selection and to the ability of TMS to reduce response latencies on the sentence completion task. In contrast, modal controllability was not linked to performance on the tasks or TMS effects. Overall, our results suggest a link between the network integrating role of the LIFG and selection and the overall semantic demands of sentence completion.


Asunto(s)
Mapeo Encefálico , Lenguaje , Humanos , Imagen por Resonancia Magnética , Corteza Prefrontal , Semántica , Estimulación Magnética Transcraneal
4.
PLoS One ; 16(4): e0246134, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33826627

RESUMEN

Raptors, including eagles, are geographically widespread and sit atop the food chain, thereby serving an important role in maintaining ecosystem balance. After facing population declines associated with exposure to organochlorine insecticides such as dichlorodiphenyltrichloroethane (DDT), bald eagles (Haliaeetus leucocephalus) have recovered from the brink of extinction. However, both bald and golden eagles (Aquila chrysaetos) are exposed to a variety of other toxic compounds in the environment that could have population impacts. Few studies have focused on anticoagulant rodenticide (AR) exposure in eagles. Therefore, the purpose of this study was to determine the types of ARs that eagles are exposed to in the USA and better define the extent of toxicosis (i.e., fatal illness due to compound exposure). Diagnostic case records from bald and golden eagles submitted to the Southeastern Cooperative Wildlife Disease Study (University of Georgia) 2014 through 2018 were reviewed. Overall, 303 eagles were examined, and the livers from 116 bald eagles and 17 golden eagles were tested for ARs. The percentage of AR exposure (i.e., detectable levels but not associated with mortality) in eagles was high; ARs were detected in 109 (82%) eagles, including 96 (83%) bald eagles and 13 (77%) golden eagles. Anticoagulant rodenticide toxicosis was determined to be the cause of mortality in 12 (4%) of the 303 eagles examined, including 11 bald eagles and 1 golden eagle. Six different AR compounds were detected in these eagles, with brodifacoum and bromadiolone most frequently detected (81% and 25% of eagles tested, respectively). These results suggest that some ARs, most notably brodifacoum, are widespread in the environment and are commonly consumed by eagles. This highlights the need for research to understand the pathways of AR exposure in eagles, which may help inform policy and regulatory actions to mitigate AR exposure risk.


Asunto(s)
4-Hidroxicumarinas/efectos adversos , Anticoagulantes/efectos adversos , Enfermedades de las Aves , Águilas/metabolismo , Rodenticidas/efectos adversos , Animales , Enfermedades de las Aves/inducido químicamente , Enfermedades de las Aves/metabolismo , Enfermedades de las Aves/patología , Ecosistema , Hígado/metabolismo , Hígado/patología , Estados Unidos
5.
Exp Brain Res ; 239(4): 1165-1178, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33560448

RESUMEN

Traditional non-invasive imaging methods describe statistical associations of functional co-activation over time. They cannot easily establish hierarchies in communication as done in non-human animals using invasive methods. Here, we interleaved functional MRI (fMRI) recordings with non-invasive transcranial magnetic stimulation (TMS) to map causal communication between the frontal cortex and subcortical target structures including the subgenual anterior cingulate cortex (sgACC) and the amygdala. Seed-based correlation maps from each participant's resting fMRI scan determined individual stimulation sites with high temporal correlation to targets for the subsequent TMS/fMRI session(s). The resulting TMS/fMRI images were transformed to quantile responses, so that regions of high-/low-quantile response corresponded to the areas of the brain with the most positive/negative evoked response relative to the global brain response. We then modeled the average quantile response for a given region (e.g., structure or network) to determine whether TMS was effective in the relative engagement of the downstream targets. Both the sgACC and amygdala were differentially influenced by TMS. Furthermore, we found that the sgACC distributed brain network was modulated in response to fMRI-guided TMS. The amygdala, but not its distributed network, also responded to TMS. Our findings suggest that individual targeting and brain response measurements reflect causal circuit mapping to the sgACC and amygdala in humans. These results set the stage to further map circuits in the brain and link circuit pathway integrity to clinical intervention outcomes, especially when the intervention targets specific pathways and networks as is possible with TMS.


Asunto(s)
Imagen por Resonancia Magnética , Estimulación Magnética Transcraneal , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Giro del Cíngulo , Humanos , Descanso
6.
Int J Psychophysiol ; 154: 101-110, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-30685229

RESUMEN

In the era of "big data", we are gaining rich person-specific information about neuroanatomy, neural function, and cognitive functions. However, the optimal ways to create precise approaches to optimize individuals' mental functions in health and disease are unclear. Multimodal analysis and modeling approaches can guide neuromodulation by combining anatomical networks, functional signal analysis, and cognitive neuroscience paradigms in single subjects. Our progress could be improved by progressing from statistical fits to mechanistic models. Using transcranial magnetic stimulation as an example, we discuss how integrating methods with a focus on mechanisms could improve our predictions TMS effects within individuals, refine our models of health and disease, and improve our treatments.


Asunto(s)
Cognición , Estimulación Magnética Transcraneal , Humanos
7.
Blood Adv ; 3(21): 3201-3213, 2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31698451

RESUMEN

Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of genetically and clinically distinct disease entities with features of differentiation arrest at known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, programs describing the variable order of replication and subnuclear 3D architecture of megabase-scale chromosomal units of DNA in different cell types). To determine the extent to which BCP-ALL RT programs mirror or deviate from specific stages of normal human B-cell differentiation, we transplanted immunodeficient mice with quiescent normal human CD34+ cord blood cells and obtained RT signatures of the regenerating B-lineage populations. We then compared these with RT signatures for leukemic cells from a large cohort of BCP-ALL patients with varied genetic subtypes and outcomes. The results identify BCP-ALL subtype-specific features that resemble specific stages of B-cell differentiation and features that seem to be associated with relapse. These results suggest that the genesis of BCP-ALL involves alterations in RT that reflect biologically significant and potentially clinically relevant leukemia-specific epigenetic changes.


Asunto(s)
Cromosomas/genética , Momento de Replicación del ADN , Leucemia/genética , Leucemia/patología , Animales , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos B/patología , Biomarcadores , Neoplasias del Sistema Nervioso Central/secundario , Biología Computacional/métodos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Femenino , Perfilación de la Expresión Génica , Variación Genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos , Humanos , Inmunofenotipificación , Leucemia/mortalidad , Masculino , Ratones , Ratones Noqueados , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidad , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patología
8.
J Neurosci ; 38(28): 6399-6410, 2018 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-29884739

RESUMEN

In language production, humans are confronted with considerable word selection demands. Often, we must select a word from among similar, acceptable, and competing alternative words to construct a sentence that conveys an intended meaning. In recent years, the left inferior frontal gyrus (LIFG) has been identified as being critical to this ability. Despite a recent emphasis on network approaches to understanding language, how the LIFG interacts with the brain's complex networks to facilitate controlled language performance remains unknown. Here, we take a novel approach to understanding word selection as a network control process in the brain. Using an anatomical brain network derived from high-resolution diffusion spectrum imaging, we computed network controllability underlying the site of transcranial magnetic stimulation (TMS) in the LIFG between administrations of language tasks that vary in response (cognitive control) demands: open-response tasks (word generation) versus closed response tasks (number naming). We found that a statistic that quantifies the LIFG's theoretically predicted control of communication across modules in the human connectome explains TMS-induced changes in open-response language task performance only. Moreover, we found that a statistic that quantifies the LIFG's theoretically predicted control of difficult-to-reach states explains vulnerability to TMS in the closed-ended (but not open-ended) response task. These findings establish a link among network controllability, cognitive function, and TMS effects.SIGNIFICANCE STATEMENT This work illustrates that network control statistics applied to anatomical connectivity data demonstrate relationships with cognitive variability during controlled language tasks and TMS effects.


Asunto(s)
Lenguaje , Modelos Neurológicos , Red Nerviosa/fisiología , Corteza Prefrontal/fisiología , Estimulación Magnética Transcraneal , Adulto , Mapeo Encefálico/métodos , Cognición/fisiología , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Modelos Teóricos
9.
Genome Res ; 28(6): 800-811, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29735606

RESUMEN

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus × castaneus mouse crosses and exploited the high single-nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene expression (total nuclear RNA-seq), and chromatin accessibility (ATAC-seq). We also present HARP, a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv, and CAST/Ei), parental configurations, and gender revealed significant RT asynchrony between alleles across ∼12% of the autosomal genome linked to subspecies genomes but not to parental origin, growth conditions, or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not as strongly with SNP density, gene expression, imprinting, or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types, including extraembryonic endoderm stem (XEN) cells, four male and female primary mouse embryonic fibroblasts (MEFs), and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs were largely lost in all differentiated cell types, accompanied by novel sites of allelic asynchrony at a considerably smaller proportion of the genome, suggesting that genome organization of homologs converges to similar folding patterns during cell fate commitment.


Asunto(s)
Momento de Replicación del ADN/genética , Replicación del ADN/genética , Genoma/genética , Células-Madre Neurales/citología , Alelos , Animales , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Fibroblastos/citología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Células Madre Embrionarias de Ratones/citología , Regiones Promotoras Genéticas
10.
Artículo en Inglés | MEDLINE | ID: mdl-29580768

RESUMEN

BACKGROUND: Patients with bipolar depression are characterized by dysregulation across the full spectrum of mood, differentiating them from patients with unipolar depression. The ability to switch neural resources among the default mode network, salience network, and executive control network (ECN) has been proposed as a key mechanism for adaptive mood regulation. The anterior insula is implicated in the modulation of functional network switching. Differential connectivity between anterior insula and functional networks may provide insights into pathophysiological differences between bipolar and unipolar mood disorders, with implications for diagnosis and treatment. METHODS: Resting-state functional magnetic resonance imaging data were collected from 98 subjects (35 unipolar, 24 bipolar, and 39 healthy control subjects). Pearson correlations were computed between bilateral insula seed regions and a priori defined target regions from the default mode network, salience network, and ECN. After r-to-z transformation, a one-way multivariate analysis of covariance was conducted to identify significant differences in connectivity between groups. Post hoc pairwise comparisons were conducted and Bonferroni corrections were applied. Receiver-operating characteristics were computed to assess diagnostic sensitivity. RESULTS: Patients with bipolar depression evidenced significantly altered right anterior insula functional connectivity with the inferior parietal lobule of the ECN relative to patients with unipolar depression and control subjects. Right anterior insula-inferior parietal lobule connectivity significantly discriminated patients with bipolar depression. CONCLUSIONS: Impaired functional connectivity between the anterior insula and the inferior parietal lobule of the ECN distinguishes patients with bipolar depression from those with unipolar depression and healthy control subjects. This finding highlights a pathophysiological mechanism with potential as a therapeutic target and a clinical biomarker for bipolar disorder, exhibiting reasonable sensitivity and specificity.


Asunto(s)
Trastorno Bipolar/fisiopatología , Corteza Cerebral/fisiopatología , Trastorno Depresivo Mayor/fisiopatología , Función Ejecutiva/fisiología , Voluntarios Sanos , Adulto , Trastorno Bipolar/diagnóstico , Mapeo Encefálico/métodos , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Descanso/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...