RESUMEN
Photodegradation of [(14)C]-chlorantraniliprole (CLAP) and [(14)C]-cyantraniliprole (CNAP) was investigated in sterile buffer solutions, in natural water, and on soil surfaces. Both compounds displayed rapid degradation in aqueous buffers when exposed to light at concentrations which could result from direct overspray to a shallow water body. While the main products observed had analogous structures, a substantial difference was noted in the rate of degradation of the two compounds despite minimal differences in their structures. Transformations observed were primarily intramolecular rearrangements and degradations resulting from addition of hydroxyl radicals leading to molecular cleavage. Some of the degradation products were transient, and several degradates had isomeric molecular compositions. The sequence of transformations was established definitively with the help of kinetics modeling. Utility of kinetics analysis in verification of the proposed pathways is illustrated.
Asunto(s)
Insecticidas/química , Fotólisis , Pirazoles/química , Suelo/química , Agua/química , ortoaminobenzoatos/química , Cinética , Pirazoles/análisis , Contaminantes del Suelo/química , Solubilidad , Contaminantes Químicos del Agua/química , ortoaminobenzoatos/análisisRESUMEN
The hydrolysis reactions of [(14)C]-chlorantraniliprole (CLAP) and cyantraniliprole (CNAP) were investigated in sterile buffer solutions at pH 4, 7, and 9. Both compounds displayed similar degradation reactions. The reactions observed were intramolecular cyclizations and rearrangements instead of the anticipated amide hydrolysis to carboxylic acids. Despite a minor difference in their structures, the degradation rates for the two compounds were substantially different. The reaction rates were examined at multiple temperatures to understand the mechanistic aspects of the underlying transformations. Similarities and differences in the hydrolysis behavior of these compounds in various pH values and temperatures are described.
Asunto(s)
Insecticidas/química , Pirazoles/química , ortoaminobenzoatos/química , Concentración de Iones de Hidrógeno , Hidrólisis , CinéticaRESUMEN
The pyrolysis of [(14)C]-chlorantraniliprole {3-bromo-1-(3-chloro-2-pyridinal)-N-[4-chloro-2-methyl-6-[(methylamino)carbonyl]phenyl]-1H-pyrazole-5-carboxamide} in tobacco was examined. Typically five commercially available cigarettes were treated separately with either [pyrazole carbonyl-(14)C] or [benzamide carbonyl-(14)C]-chlorantraniliprole at a concentration of 20 ppm (µg chlorantraniliprole equivalent/g cigarette weight; main study) to 40 ppm (for degradate identification only). All treated cigarettes were smoked using an apparatus designed to collect mainstream (MS) and sidestream (SS) smoke through a glass fiber filter and a series of liquid traps. The material balance for recovery of applied radiolabel ranged from 92.4 to 94.9%. Unchanged chlorantraniliprole was the major component found in butt and filter extracts, averaging a total of 17.4-17.9% of the applied radioactivity. A nonpolar degradation product, 2-[3-bromo-1-(3-chloro-2-pyridinyl)-1H-pyrazol-5-yl]-6-chloro-3,8-dimethyl-4(3H)-quinazolinone, designated 1, represented an average of 10.1-15.9% of the applied radioactivity in the [pyrazole carbonyl-(14)C] or [benzamide carbonyl-(14)C]-chlorantraniliprole cigarettes, respectively. (14)CO(2) was the major degradate, representing an average of 32.9 and 25.1% of the applied radioactivity in pyrazole and benzamide experiments, respectively. In the pyrazole carbonyl label a polar degradate, 5-bromo-N-methyl-1H-pyrazole-3-carboxamide (2) was present in the filter extracts at an average of 9.5% of the applied radioactivity. The most nonpolar degradate, 2,6-dichloro-4-methyl-11H-pyrido[2,1b]quinazolin-11-one (3), was present in [benzamide carbonyl-(14)C]-treated cigarettes only and represented an average of 14.7% of the applied radioactivity.
Asunto(s)
Calor , Insecticidas/química , Nicotiana/química , ortoaminobenzoatos/química , Radioisótopos de Carbono , Humo/análisis , FumarRESUMEN
The sequence positions of d and l Leu and Lys residues in bogorol A (1) have been defined by a simple and novel approach that utilizes small amounts of sample and focuses on detecting the order in which amino acids are liberated from the parent peptide during acid-catalyzed hydrolysis. This technique builds on a previously established relationship between the steric and electronic features of amino acids and their predilection for acidic liberation from polypeptides via dipeptides. The results, which complete the structure of bogorol A, have been confirmed by traditional degradation experiments. Utilizing the knowledge of the structure of bogorol A (1) as a template, we rapidly elucidated the structures of bogorols B-E (2-5) via analysis of ESI-MS and ESI-MS/MS data and GC analysis of degradation products. The bogorol cationic peptide antibiotics contain a number of unusual structural features, which include the reduction of the C-terminal residue to valinol, an N-terminal residue of 2-hydroxy-3-methylpentanoic acid, the incorporation of four d amino acids, and the presence of a dehydroamino acid. Bogorols show selective and relatively potent activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus spp., as well as moderate activity against Escherichia coli.