Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Physiol Pharmacol ; 72(2)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34374652

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked lethal disorder caused by mutations in the dystrophin gene. Progression of this disease may lead to cardiomyopathy and respiratory failure, which are the main causes of death among DMD patients. Lack of dystrophin affects cellular myogenic function and related organelles. Dystrophin deficiency results in intracellular Ca2+ dysregulation, mitochondrial dysfunction and induces elevated production of reactive oxygen species (ROS). Due to current findings, mitochondria may be also a potential target for DMD therapy. In this review we attempted to provide an insight into the role of mitochondria in perpetuation of DMD disease.


Asunto(s)
Distrofia Muscular de Duchenne , Humanos , Mitocondrias , Distrofia Muscular de Duchenne/genética , Especies Reactivas de Oxígeno
2.
J Physiol Pharmacol ; 69(6)2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30898982

RESUMEN

Cardiovascular diseases along with MI (myocardial infarction) lead to regional ischaemia and hypoxic conditions, which prevail after infarction. Diminished O2 saturation which is related to elevated level of hypoxia inducible factor 1 (HIF-1) transcription factor, may switch the expression of many genes. To maximize effect of therapies proposed by regenerative medicine, it is essential to verify (within different time points after MI) the expression of proangiogenic genes and their receptors that are regulated, along with the expression of HIF-1α. We demonstrated a connection between the expression of Hif-1α (in murine post infarcted heart model) and the proangiogenic genes Vegf-a; and Plgf and their receptors during myocardial hypoxia. The innovative part of the study required establishment of the most accurate in vitro O2 level corresponding to the hypoxia level prevailing in myocardium after MI. We determined the influence of hypoxia on the biology of human myoblasts in in vitro oxygen conditions (3%), corresponding to those prevailing in the heart after an infarction using a murine model. We also tested myoblasts that were genetically modified with VEGF-A/FGF-4 and PlGF under hypoxic conditions and compared their characteristics with cells cultured under normoxia and hyperoxia (standard in vitro conditions) with respect to myogenic gene expression, cell proliferation, fusion potential and proangiogenic function. The examination of genetically modified myoblasts under optimized in vitro hypoxia conditions led to the conclusion that hypoxia did not negatively influence the biological functions of the myoblasts, such as cell proliferation and/or proangiogenic characteristics. These results support the expected increased proregenerative effects of such genetically modified human myoblasts.


Asunto(s)
Expresión Génica/genética , Hipoxia/genética , Mioblastos/patología , Infarto del Miocardio/genética , Neovascularización Patológica/genética , Animales , Línea Celular , Proliferación Celular/genética , Modelos Animales de Enfermedad , Factor 4 de Crecimiento de Fibroblastos/genética , Células Endoteliales de la Vena Umbilical Humana , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Ratones SCID , Miocardio/patología , Factor de Crecimiento Placentario/genética , Factor A de Crecimiento Endotelial Vascular/genética
3.
Int J Cardiol ; 202: 710-21, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26457413

RESUMEN

BACKGROUND: Myocardial infarction (MI) and left ventricle remodeling (LVR) are two of the most challenging disease entities in developed societies. Since conventional treatment cannot fully restore heart function new approaches were attempted to develop new strategies and technologies that could be used for myocardial regeneration. One of these strategies pursued was a cell therapy--particularly applying skeletal muscle stem cells (SkMCs). METHODS AND RESULTS: Using NOD-SCID murine model of MI and human skeletal myoblast transplantation we were able to show that SkMC administration significantly affected gene expression profile (p<0.05) (NPPB, CTGF, GATA4, SERCA2a, PLB) of the heart ventricular tissue and this change was beneficial for the heart function. We have also shown, that the level of heart biomarker, NT-proBNP, decreased in animals receiving implanted cells and that the NT-proBNP level negatively correlated with left ventricle area fraction change (LVFAC) index which makes NT-proBNP an attractive tool in assessing the efficacy of cell therapy both in the animal model and prospectively in clinical trials. CONCLUSIONS: The results obtained suggest that transplanted SkMCs exerted beneficial effect on heart regeneration and were able to inhibit LVR which was confirmed on the molecular level, giving hope for new ways of monitoring novel cellular therapies for MI.


Asunto(s)
Trasplante de Células/métodos , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Mioblastos/trasplante , Infarto del Miocardio/cirugía , ARN/genética , Remodelación Ventricular/fisiología , Animales , Ligamento Cruzado Anterior/citología , Células Cultivadas , Modelos Animales de Enfermedad , Citometría de Flujo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos NOD , Ratones SCID , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Miocardio/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Función Ventricular Izquierda/fisiología
4.
J Physiol Pharmacol ; 65(2): 193-207, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24781729

RESUMEN

Myocardial infarction results in cardiomyocyte loss and may eventually lead to cardiac failure. Skeletal myoblast transplantation into the scar area may compensate for this observed cell loss by strengthening the weakened myocardium and inducing myogenesis. Moreover, skeletal myoblasts may serve as potential transgene carriers for the myocardium (i.e., delivering pro-angiogenic factors, which may potentially improve blood perfusion in infarcted heart). We examined the influence of the simultaneous overexpression of two potent pro-angiogenic factors, fibroblast growth factor-4 (FGF-4) and vascular endothelial growth factor (VEGF), on human primary myoblast proliferation, cell cycle, resistance to hypoxic stress conditions and myogenic gene expression, as well as the induction of pro-angiogenic activities. We used a bicistronic plasmid vector encoding two factors introduced via an efficient myoblast electroporation method. The levels of overexpressed proteins were assessed, and their functionality at capillary formation was evaluated. This combined approach led to a high level of non-viral transient overexpression of both pro-angiogenic proteins, which proved to be potent regulators of blood vessel development assayed in capillary formation tests. We demonstrated in in vitro conditions that the transfection of human skeletal myoblasts with both FGF-4 and VEGF did not affect their basic biological properties such as the cell cycle, proliferation or expression of myogenic lineage-specific genes, and the modified cells adapted to oxidative stress conditions. Overall, the results obtained suggest that the applied combined approach with the use of two pro-angiogenic genes overexpressed in skeletal muscle stem cells may be an interesting alternative for the effective therapy of myocardial infarction in animal models and/or prospective clinical trials.


Asunto(s)
Factor 4 de Crecimiento de Fibroblastos/metabolismo , Mioblastos Esqueléticos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ciclo Celular , Proliferación Celular , Electroporación , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Infarto del Miocardio/terapia , Neovascularización Fisiológica , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...