Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Protein Eng Des Sel ; 32(5): 241-249, 2019 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-31340035

RESUMEN

The antigen-binding domains of camelid heavy-chain antibodies, also called nanobodies, gained strong attention because of their unique functional and biophysical properties. They gave rise to an entire spectrum of applications in biotechnology, research and medicine. Despite several reports about reversibly refolding nanobodies, protein aggregation plays a major role in nanobody thermoresistance, asking for strategies to engineer their refolding behavior. Here, we use measurements of nanobody aggregation kinetics to validate structural features in the nanobody fold that are suppressing heat-induced nanobody aggregation. Furthermore, the kinetic measurements yielded a detailed insight into the concept of the ΔTm shift, a metric for protein aggregation propensities obtained from differential scanning fluorimetry measurements. By relating the equilibrium measurements of the ΔTm shift to the kinetic measurements of heat-induced nanobody aggregation, a distinct relationship could be identified that allows a prediction of nanobody aggregation rates from a simple equilibrium measurement of ΔTm.


Asunto(s)
Calor , Agregado de Proteínas , Ingeniería de Proteínas , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/genética , Animales , Camelus , Estabilidad Proteica
2.
FEMS Microbiol Lett ; 365(18)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085010

RESUMEN

The classical monomeric autotransporters are ubiquitously used by Gram-negative bacteria to export virulence and colonization factors to their cell surface or into their surroundings. They are expressed as monomeric proteins that pass the inner and outer membrane in two consecutive steps facilitated by the Sec translocon and the Bam complex, respectively. In this mini-review we discuss how autotransporters translocate their secreted functional domains across the outer membrane. We highlight the interactions with the Bam complex and discuss how specific features of the recently solved structure of Bam lead to a mechanistic model for autotransporter secretion. Furthermore, the autotransporter secretion pathway is the system of choice for surface display of heterologous proteins for biotechnical and biomedical purposes. We summarize recent advances in the application of autotransporters with a focus on outer membrane vesicle vaccine development and discuss its limitations in secreting more complex heterologous proteins. Finally, we present an exciting new technology to circumvent secretion limitations by ligating heterologous proteins of interest to autotransporters that are displayed on the cell surface.


Asunto(s)
Bacterias Gramnegativas/metabolismo , Sistemas de Secreción Tipo V/metabolismo , Factores de Virulencia/metabolismo , Investigación Biomédica/tendencias , Técnicas de Visualización de Superficie Celular/métodos , Dominios Proteicos , Transporte de Proteínas
3.
Sci Rep ; 8(1): 7934, 2018 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-29784954

RESUMEN

Nanobodies represent the variable binding domain of camelid heavy-chain antibodies and are employed in a rapidly growing range of applications in biotechnology and biomedicine. Their success is based on unique properties including their reported ability to reversibly refold after heat-induced denaturation. This view, however, is contrasted by studies which involve irreversibly aggregating nanobodies, asking for a quantitative analysis that clearly defines nanobody thermoresistance and reveals the determinants of unfolding reversibility and aggregation propensity. By characterizing nearly 70 nanobodies, we show that irreversible aggregation does occur upon heat denaturation for the large majority of binders, potentially affecting application-relevant parameters like stability and immunogenicity. However, by deriving aggregation propensities from apparent melting temperatures, we show that an optional disulfide bond suppresses nanobody aggregation. This effect is further enhanced by increasing the length of a complementarity determining loop which, although expected to destabilize, contributes to nanobody stability. The effect of such variations depends on environmental conditions, however. Nanobodies with two disulfide bonds, for example, are prone to lose their functionality in the cytosol. Our study suggests strategies to engineer nanobodies that exhibit optimal performance parameters and gives insights into general mechanisms which evolved to prevent protein aggregation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...