Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
RSC Adv ; 13(12): 8360-8373, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36926012

RESUMEN

The study is aimed at evaluation of the impact of ferrocene (Fc) anchoring method on the efficiency of its incorporation on the surface of mesoporous silica SBA-15, as well as the reactivity and stability of these hybrid organic-inorganic materials in degradation of ciprofloxacin (CIP) via photocatalytic, Fenton and photo-Fenton processes. For this purpose, Fc was anchored on SBA-15 supports via three different methods: (i) Schiff base formation, (ii) Friedel-Crafts alkylation, and (iii) click reaction (azide-alkyne cycloaddition). The as-prepared materials were characterized by powder X-ray diffraction, nitrogen physisorption, infrared spectroscopy and inductively coupled plasma optical emission spectrometry, as well as UV-visible and X-ray photoelectron spectroscopies. The highest efficiency of Fc anchoring was obtained when applying the Friedel-Crafts alkylation, while the least effective was the Schiff base formation. As concerns the catalysts activity, all materials exhibited negligible reactivity in the photocatalytic process, but were capable of degrading CIP in the presence of H2O2 (Fenton process). For all materials, the highest efficiency of CIP removal was observed for the photo-Fenton reaction. When expressed as the activity of a single Fc site, the most reactive were Fc species from the catalyst prepared by the click reaction. All materials, irrespectively of the ferrocene anchoring method, were deactivating over the reaction time because of Fc leaching. The highest stability in three subsequent reaction cycles was observed for the catalyst prepared by the azide-alkyne cycloaddition. Thus, the click reaction was found to be the best method for the preparation of Fc-containing catalysts for CIP degradation.

2.
Molecules ; 28(4)2023 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-36838514

RESUMEN

The world scenario regarding consumption and demand for products based on fossil fuels has demonstrated the imperative need to develop new technologies capable of using renewable resources. In this context, the use of biomass to obtain chemical intermediates and fuels has emerged as an important area of research in recent years, since it is a renewable source of carbon in great abundance. It has the benefit of not contributing to the additional emission of greenhouse gases since the CO2 released during the energy conversion process is consumed by it through photosynthesis. In the presented review, the authors provide an update of the literature in the field of biomass transformation with the use of niobium-containing catalysts, emphasizing the versatility of niobium compounds for the conversion of different types of biomass.


Asunto(s)
Combustibles Fósiles , Niobio , Biomasa , Fotosíntesis
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768577

RESUMEN

The aim of this study was to get insight into the pathway of the acetaldehyde formation from ethanol (the rate-limiting step in the production of 1,3-butadiene) on Cu-SBA-15 and Cu-MnSBA-15 mesoporous molecular sieves. Physicochemical properties of the catalysts were investigated by XRD, N2 ads/des, Uv-vis, XPS, EPR, pyridine adsorption combined with FTIR, 2-propanol decomposition and 2,5-hexanedione cyclization and dehydration test reactions. Ethanol dehydrogenation to acetaldehyde (without and with oxygen) was studied in a flow system using the FTIR technique. In particular, the effect of Lewis acid and basic (Lewis and BrØnsted) sites, and the oxygen presence in the gas reaction mixture with ethanol on the activity and selectivity of copper catalysts, was assessed and discussed. Two different reaction pathways have been proposed depending on the reaction temperature and the presence or absence of oxygen in the flow of the reagents (via ethoxy intermediate way at 593 K, in ethanol flow, or ethoxide intermediate way at 473 K in the presence of ethanol and oxygen in the reaction mixture).


Asunto(s)
Cobre , Etanol , Etanol/química , Cobre/química , Oxígeno , Acetaldehído
4.
Int J Mol Sci ; 23(9)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35563036

RESUMEN

The aim of this work was to gain insights into the role of manganese in MnSBA-15 support for gold in the base-free glucose oxidation with H2O2 using a microwave reactor. MnSBA-15 (manganese-acidity source) and SBA-15 (for comparison) were modified with Au (2.2 wt. %) and Cu (for comparison). The physicochemical properties of the catalysts were investigated by XRD, N2 ads/des, TEM, UV-vis, XPS, pyridine adsorption combined with FTIR, ATR-FTIR, and 2-propanol decomposition. The effects of the Mn presence in the support, Au NPs size that determines the number of active Au centers, and the Fermi energy (EF), together with the effects of the pore size, reaction temperature, and time on the activity and selectivity of the applied catalysts were assessed and discussed. It has been demonstrated that the presence of Mn generated Lewis acid centers which did not participate in glucose and H2O2 adsorption, and thus, were not directly involved in the reaction pathway. Both reagents were adsorbed on gold nanoparticles. H2O2 was decomposed to molecular oxygen which oxidized glucose to gluconic acid (50-90% of glucose conversion depending on the reaction time and ~100% selectivity). The presence of manganese in MnSBA-15 was responsible for increased Au NPs size and only slightly influenced the negative charge on gold particles. To achieve effective activity a compromise between the number of active gold species and the level of EF has to be reached (for 5.7 nm Au NPs).


Asunto(s)
Oro , Nanopartículas del Metal , Glucosa/química , Oro/química , Peróxido de Hidrógeno , Manganeso , Nanopartículas del Metal/química , Microondas , Dióxido de Silicio
5.
Materials (Basel) ; 14(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885381

RESUMEN

In this paper, the optimization of the synthesis of catalysts based on acidic mesoporous silica of the SBA-15 type by post-synthesis immobilization of 3-(trihydroxysilyl)-1-propanesulfonic acid (TPS) under increased pressure up to 20 bar is reported. Sample structures and composition were examined by XRD measurement, low-temperature N2 adsorption/desorption and elemental analysis. The catalytic activities of the materials obtained were determined in both gas and liquid phase processes, i.e., by esterification of acetic acid and glycerol dehydration, respectively. The optimum pressure for modification leading to the highest number of acidic sites was found to be 10 bar. The final material was very active and stable in liquid phase processes; however, the stability in the gas-phase process was unsatisfactory due to the loss of sulphonic species from the catalyst surface.

6.
Materials (Basel) ; 14(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576474

RESUMEN

Activity of gold supported catalysts strongly depends on the type and composition of support, which determine the size of Au nanoparticles (Au NPs), gold-support interaction influencing gold properties, interaction with the reactants and, in this way, the reaction pathway. The aim of this study was to use two types of zeolites: the three dimensional HBeta and the layered two-dimensional MCM-36 as supports for gold, and modification of their properties towards the achievement of different properties in oxidation of glucose to gluconic acid with molecular oxygen and hydrogen peroxide. Such an approach allowed establishment of relationships between the activity of gold catalysts and different parameters such as Au NPs size, electronic properties of gold, structure and acidity of the supports. The zeolites were modified with (3-aminopropyl)-trimethoxysilane (APMS), which affected the support features and Au NPs properties. Moreover, the modification of the zeolite lattice with boron was applied to change the strength of the zeolite acidity. All modifications resulted in changes in glucose conversion, while maintaining high selectivity to gluconic acid. The most important findings include the differences in the reaction steps limiting the reaction rate depending on the nature of the oxidant applied (oxygen vs. H2O2), the important role of porosity of the zeolite supports, and accumulation of negative charge on Au NPs in catalytic oxidation of glucose.

7.
J Hazard Mater ; 415: 125665, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33773255

RESUMEN

Formation of reactive oxygen species (ROS) via H2O2 activation is of vital importance in catalytic environmental chemistry, especially in degradation of organic pollutants. A new mixed niobium-cerium oxide (NbCeOx) was tailored for this purpose. A thorough structural and chemical characterization of NbCeOx along with CeO2 and Nb2O5 reference materials was carried out using TEM/STEM/EDS, SEM, XRD, XPS, EPR, UV-vis and N2 physisorption. The ability of the catalysts to activate H2O2 towards ROS formation was assessed on the basis of EPR and Raman measurements. Catalytic activity of the oxides was evaluated in degradation of methylene blue (MB) as a model pollutant. Very high activity of NbCeOx was attributed to the mixed redox-acidic nature of its surface, which originated from the synergy between Nb and Ce species. These two properties (redox activity and acidity) ensured convenient conditions for efficient activation of H2O2 and degradation of MB. The activity of NbCeOx in MB degradation was found 3 times higher than that of the commercial Nb2O5 CBMM catalyst and 240 times higher than that of CeO2. The mechanism of the degradation reaction was found to be an adsorption-triggered process initiated by hydroxyl radicals, generated on the surface via the transformation of O2-•/O22-.

8.
Molecules ; 25(24)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302390

RESUMEN

Four different methods for gold deposition on Beta zeolite, namely impregnation, ion-exchange, deposition-reduction, and grafting on (3-aminopropyl)trimethoxysilane functionalized support, were applied to investigate their influence on textural/structural changes in the zeolite support and its surface acidity. The as-prepared materials were fully characterized by XRD, N2 physisorption, ICP-OES, XPS, TEM, and pyridine adsorption. The obtained results indicated that bifunctional redox-acidic materials prepared within this work were characterized not only by different gold loading and gold particle size, but also different textural parameters and acidity. All these features were strongly affected by the procedure applied for gold deposition. The introduction of Au into Beta zeolite by ion exchange caused a significant decrease in the Si/Al ratio in the zeolite framework. The size of Au particles determined the textural parameters of the zeolite and the number of Lewis acid sites (LAS). The Brønsted acid sites (BAS) number was decreased if (3-aminopropyl)trimethoxysilane or NaBH4 were used in the procedure of gold deposition. The highest BAS/LAS ratio was achieved for the sample prepared by ion exchange in the ammonium form of Beta zeolite. The presented results permit making a proper choice of the gold modification procedure for the preparation of bifunctional (redox-acidic) materials, addressed to a desired application.


Asunto(s)
Oro/química , Zeolitas/química , Fenómenos Químicos , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Porosidad , Análisis Espectral , Electricidad Estática
9.
Molecules ; 25(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066391

RESUMEN

Three different metal oxides (basic MgO, basic-acidic Al2O3 and acidic-basic Nb2O5) characterized by comparable surface areas (MgO-130 m2/g; Al2O3-172 m2/g and Nb2O5-123 m2/g) and pore systems (domination of mesopores with narrow pore size distribution) were modified with tris(2-aminoethyl)amine (TAEA) via two methods: (i) direct anchoring of amine on metal oxide and (ii) anchoring of amine on metal oxide functionalized with (3-chloropropyl)trimethoxysilane. The obtained hybrid materials were characterized in terms of effectiveness of modifier anchoring (elemental analysis), their structural/textural properties (nitrogen adsorption/desorption, XRD), acidity/basicity of support (2-propanol dehydration and dehydrogenation, dehydration and cyclization of 2,5-hexanedione), states of modifier deposited on supports (XPS, FTIR, UV-VIS) and the strength of interaction between the modifier and the support (TG/DTG). It was evidenced that acidic-basic properties of metal oxides as well as the procedure of modification with TAEA determined the ways of amine anchoring and the strength of its interaction with the support. The obtained hybrid materials were tested in Knoevenagel condensation between furfural and malononitrile. The catalysts based on MgO showed superior activity in this reaction. It was correlated with the way of TAEA anchoring on basic MgO and the strength of modifier anchoring on the support. To the best of our knowledge tris(2-aminoethyl)amine has not been used as a modifier of solid supports for enhancement of the catalyst activity in Knoevenagel condensation.


Asunto(s)
Etilenodiaminas/química , Óxidos/química , 2-Propanol/química , Catálisis , Ciclización , Furaldehído/química , Hexanonas/química , Óxido de Magnesio/química , Nitrilos/química , Nitrógeno/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
10.
RSC Adv ; 10(25): 14570-14580, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-35497122

RESUMEN

The aim of this study was better understanding of surface properties of bimetallic (silver-platinum) catalysts and to verify if a very small addition of platinum (ca. 0.05 wt%) to silver (ca. 2.0 wt%) loaded on ordered mesoporous silica, SBA-15, would improve the catalytic properties of bimetallic Ag-Pt materials in selective oxidation of methanol to methyl formate. Ag-Pt catalysts were prepared by one-step and step-by-step procedures and the final Ag/Pt molar ratio in the respective samples was equal to 86 and 63. The catalysts were characterized after calcination and different activation treatments (in Ar and O2). X-ray diffraction, UV-vis and XP spectroscopy confirmed the lack of Ag-Pt alloy crystallites in the samples and also evidenced a higher resistance of silver oxide species to reduction upon activation in Ar flow in the presence of platinum promoter interacting with silver species. Methanol oxidation over the samples activated in Ar flow and in oxidizing flow (O2 + Ar) helped identify the role of each component in the bimetallic Ag-Pt catalyst in terms of activity and selectivity in the oxidation of methanol to methyl formate. A highly active bimetallic Pt/Ag/SBA-15 catalyst, selective to methyl formate and stable in methanol oxidation was constructed.

11.
Phys Chem Chem Phys ; 17(34): 22402-11, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26250394

RESUMEN

The geometry, energetic, and spectroscopic properties of molecular structures of silica-supported niobium oxide catalysts are studied using periodic density functional calculations (DFT) and compared with experimental data. The calculations are done for Nb oxide species inserted or grafted in/on an amorphous hydroxylated silica surface. Different positions of the Nb atom/atoms in the silica structure have been investigated. By means of DFT calculations the geometry and the degree of hydration of Nb oxide species with oxidation state +5 have been studied. The local Nb geometry depends on different parameters such as the number of Nb-O-Si groups vs. Nb-O-H groups, the formation of H bonds and the distance between Nb atoms. The interaction between the oxide and silanol groups occurs by formation of Si-O-Nb bonds with chemically and thermally stable Brønsted and Lewis acid sites. UV-Vis, reflection absorption infrared vibrational spectra (RAIRS) as well as various thermodynamic properties have also been investigated in order to get a better insight into the system studied and to provide support to possible experimental studies.

12.
J Hazard Mater ; 179(1-3): 444-52, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20363071

RESUMEN

Zeolites exhibiting different structures (Y, Beta, and ZSM-5) were modified with gold and iron and applied for odour adsorption from the air containing dibutyl sulphide (Bu(2)S) used as a representative odour producing compound. The structure of the zeolites used determines the rate of adsorption (higher on Y type zeolites and smaller on two other zeolites), whereas hydrophilicity affects the selectivity towards Bu(2)S adsorption increasing in the order: Y

Asunto(s)
Oro/química , Hierro/química , Odorantes/análisis , Zeolitas/química , 1-Propanol/química , Adsorción , Catálisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Transmisión , Oxidación-Reducción , Polvos , Piridinas/química , Espectrometría por Rayos X , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Sulfuros/química , Difracción de Rayos X
13.
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...