Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genome Med ; 14(1): 7, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35042540

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. METHODS: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with 'omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). RESULTS: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10-6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10-3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. CONCLUSIONS: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/genética , Animales , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Polimorfismo de Nucleótido Simple , Pez Cebra/genética
2.
NMR Biomed ; 31(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29266540

RESUMEN

The availability of high-field-strength magnetic resonance imaging (MRI) systems has brought about the development of techniques that aim to map myelination via the exploitation of various contrast mechanisms. Myelin mapping techniques have the potential to provide tools for the diagnosis and treatment of diseases, such as multiple sclerosis. In this study, we evaluated the sensitivity of T2 *, frequency shift and susceptibility measures to myelin levels in a cuprizone mouse model of demyelination. The model was supplemented with two different dosages of fingolimod, a drug known to positively affect demyelination. A decrease in grey-white matter contrast with the cuprizone diet was observed for T2 *, frequency shift and susceptibility measures, together with myelin basic protein antibody findings. These results indicate that T2 *, frequency shift and susceptibility measures have the potential to act as biomarkers for myelination. Susceptibility was found to be the most sensitive measure to changes in grey-white matter contrast. In addition, fingolimod treatment was found to reduce the level of demyelination, with a larger dosage exhibiting a greater reduction in demyelination for the in vivo MRI results. Overall, susceptibility mapping appears to be a more promising tool than T2 * or frequency shift mapping for the early diagnosis and treatment of diseases in which myelination is implicated.


Asunto(s)
Clorhidrato de Fingolimod/farmacología , Imagen por Resonancia Magnética , Vaina de Mielina/metabolismo , Animales , Cuprizona , Sustancia Gris/patología , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína Básica de Mielina/metabolismo , Parvalbúminas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...