Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 27(18): 2857-66, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27466320

RESUMEN

The Notch signaling pathway plays essential roles in both animal development and human disease. Regulation of Notch receptor levels in membrane compartments has been shown to affect signaling in a variety of contexts. Here we used steady-state and pulse-labeling techniques to follow Notch receptors in sensory organ precursor cells in Drosophila. We find that the endosomal adaptor protein Numb regulates levels of Notch receptor trafficking to Rab7-labeled late endosomes but not early endosomes. Using an assay we developed that labels different pools of Notch receptors as they move through the endocytic system, we show that Numb specifically suppresses a recycled Notch receptor subpopulation and that excess Notch signaling in numb mutants requires the recycling endosome GTPase Rab11 activity. Our data therefore suggest that Numb controls the balance between Notch receptor recycling and receptor targeting to late endosomes to regulate signaling output after asymmetric cell division in Drosophila neural progenitors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Hormonas Juveniles/metabolismo , Células-Madre Neurales/metabolismo , Receptores Notch/metabolismo , Animales , Diferenciación Celular/fisiología , Membrana Celular/metabolismo , Drosophila melanogaster/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Endosomas/fisiología , Transporte de Proteínas , Receptores Notch/fisiología , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
2.
J Cell Biol ; 201(3): 439-48, 2013 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-23609534

RESUMEN

In Drosophila peripheral neurogenesis, Notch controls cell fates in sensory organ precursor (SOP) cells. SOPs undergo asymmetric cell division by segregating Numb, which inhibits Notch signaling, into the pIIb daughter cell after cytokinesis. In contrast, in the pIIa daughter cell, Notch is activated and requires Sanpodo, but its mechanism of action has not been elucidated. As Sanpodo is present in both pIIa and pIIb cells, a second role for Sanpodo in regulating Notch signaling in the low-Notch pIIb cell has been proposed. Here we demonstrate that Sanpodo regulates Notch signaling levels in both pIIa and pIIb cells via distinct mechanisms. The interaction of Sanpodo with Presenilin, a component of the γ-secretase complex, was required for Notch activation and pIIa cell fate. In contrast, Sanpodo suppresses Notch signaling in the pIIb cell by driving Notch receptor internalization. Together, these results demonstrate that a single protein can regulate Notch signaling through distinct mechanisms to either promote or suppress signaling depending on the local cellular context.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Receptores Notch/metabolismo , Secuencias de Aminoácidos , Línea Celular , Endocitosis , Mecanorreceptores/fisiología , Proteínas de Microfilamentos/fisiología , Presenilinas/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Células Madre/fisiología
3.
PLoS One ; 7(11): e48720, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23144943

RESUMEN

In Drosophila, the pattern of adult pigmentation is initiated during late pupal stages by the production of catecholamines DOPA and dopamine, which are converted to melanin. The pattern and degree of melanin deposition is controlled by the expression of genes such as ebony and yellow as well as by the enzymes involved in catecholamine biosynthesis. In this study, we show that the conserved TSC/TORC1 cell growth pathway controls catecholamine biosynthesis in Drosophila during pigmentation. We find that high levels of Rheb, an activator of the TORC1 complex, promote premature pigmentation in the mechanosensory bristles during pupal stages, and alter pigmentation in the cuticle of the adult fly. Disrupting either melanin synthesis by RNAi knockdown of melanogenic enzymes such as tyrosine hydroxylase (TH), or downregulating TORC1 activity by Raptor knockdown, suppresses the Rheb-dependent pigmentation phenotype in vivo. Increased Rheb activity drives pigmentation by increasing levels of TH in epidermal cells. Our findings indicate that control of pigmentation is linked to the cellular nutrient-sensing pathway by regulating levels of a critical enzyme in melanogenesis, providing further evidence that inappropriate activation of TORC1, a hallmark of the human tuberous sclerosis complex tumor syndrome disorder, can alter metabolic and differentiation pathways in unexpected ways.


Asunto(s)
Catecolaminas/biosíntesis , Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Pigmentación/genética , Factores de Transcripción/fisiología , Animales , Catecolaminas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Epidermis/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación del Desarrollo de la Expresión Génica , Péptidos y Proteínas de Señalización Intracelular/genética , Melaninas/metabolismo , Proteínas de Unión al GTP Monoméricas/fisiología , Neuropéptidos/fisiología , Pupa/metabolismo , Interferencia de ARN , Proteína Homóloga de Ras Enriquecida en el Cerebro , Proteínas Quinasas S6 Ribosómicas/genética , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factores de Transcripción/metabolismo
4.
J Cell Biol ; 196(1): 65-83, 2012 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-22213802

RESUMEN

Notch signaling governs binary cell fate determination in asymmetrically dividing cells. Through a forward genetic screen we identified the fly homologue of Eps15 homology domain containing protein-binding protein 1 (dEHBP1) as a novel regulator of Notch signaling in asymmetrically dividing cells. dEHBP1 is enriched basally and at the actin-rich interface of pII cells of the external mechanosensory organs, where Notch signaling occurs. Loss of function of dEHBP1 leads to up-regulation of Sanpodo, a regulator of Notch signaling, and aberrant trafficking of the Notch ligand, Delta. Furthermore, Sec15 and Rab11, which have been previously shown to regulate the localization of Delta, physically interact with dEHBP1. We propose that dEHBP1 functions as an adaptor molecule for the exocytosis and recycling of Delta, thereby affecting cell fate decisions in asymmetrically dividing cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , División Celular Asimétrica/fisiología , Proteínas de Drosophila/fisiología , Drosophila/citología , Exocitosis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Regulación de la Expresión Génica , Proteínas de Microfilamentos/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo
5.
J Vis Exp ; (51)2011 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-21654627

RESUMEN

Since the discovery of Green Fluorescent Protein (GFP), there has been a revolutionary change in the use of live-cell imaging as a tool for understanding fundamental biological mechanisms. Striking progress has been particularly evident in Drosophila, whose extensive toolkit of mutants and transgenic lines provides a convenient model to study evolutionarily-conserved developmental and cell biological mechanisms. We are interested in understanding the mechanisms that control cell fate specification in the adult peripheral nervous system (PNS) in Drosophila. Bristles that cover the head, thorax, abdomen, legs and wings of the adult fly are individual mechanosensory organs, and have been studied as a model system for understanding mechanisms of Notch-dependent cell fate decisions. Sensory organ precursor (SOP) cells of the microchaetes (or small bristles), are distributed throughout the epithelium of the pupal thorax, and are specified during the first 12 hours after the onset of pupariation. After specification, the SOP cells begin to divide, segregating the cell fate determinant Numb to one daughter cell during mitosis. Numb functions as a cell-autonomous inhibitor of the Notch signaling pathway. Here, we show a method to follow protein dynamics in SOP cell and its progeny within the intact pupal thorax using a combination of tissue-specific Gal4 drivers and GFP-tagged fusion proteins. This technique has the advantage over fixed tissue or cultured explants because it allows us to follow the entire development of an organ from specification of the neural precursor to growth and terminal differentiation of the organ. We can therefore directly correlate changes in cell behavior to changes in terminal differentiation. Moreover, we can combine the live imaging technique with mosaic analysis with a repressible cell marker (MARCM) system to assess the dynamics of tagged proteins in mitotic SOPs under mutant or wildtype conditions. Using this technique, we and others have revealed novel insights into regulation of asymmetric cell division and the control of Notch signaling activation in SOP cells (examples include references 1-6, 7, 8).


Asunto(s)
Técnicas Citológicas/métodos , Drosophila/citología , Sistema Nervioso Periférico/citología , Órganos de los Sentidos/citología , Animales , Drosophila/crecimiento & desarrollo , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Sistema Nervioso Periférico/crecimiento & desarrollo , Pupa , Órganos de los Sentidos/crecimiento & desarrollo
6.
Mol Biol Cell ; 21(5): 802-10, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20053677

RESUMEN

In Drosophila, mitotic neural progenitor cells asymmetrically segregate the cell fate determinant Numb in order to block Notch signaling in only one of the two daughter cells. Sanpodo, a membrane protein required for Notch signaling in asymmetrically dividing cells, is sequestered from the plasma membrane to intracellular vesicles in a Numb-dependent way after neural progenitor cell mitosis. However, the significance of Numb-dependent Sanpodo regulation is unclear. In this study, we conducted a structure-function analysis to identify the determinants of Sanpodo targeting in vivo. We identified an NPAF motif in the amino-terminal cytoplasmic tail of Sanpodo, which is conserved among insect Sanpodo homologues. The Sanpodo NPAF motif is predicted to bind directly to the Numb phosphotyrosine-binding domain and is critical for Numb binding in vitro. Deletion or mutation of the NPAF motif results in accumulation of Sanpodo at the plasma membrane in Numb-positive cells in vivo. Genetic analysis of Sanpodo NPAF mutants shows that Numb-dependent Sanpodo endocytic targeting can be uncoupled from Notch signaling regulation. Our findings demonstrate that Sanpodo contains an evolutionarily conserved motif that has been linked to Numb-dependent regulation in vertebrates and further support the model that Numb regulates Notch signaling independently of Sanpodo membrane trafficking in neural progenitor cells.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Hormonas Juveniles/metabolismo , Neuronas/fisiología , Receptores Notch/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Membrana Celular/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitosis , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
7.
J Clin Invest ; 120(1): 93-102, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20038815

RESUMEN

Mutations in either of the genes encoding the tuberous sclerosis complex (TSC), TSC1 and TSC2, result in a multisystem tumor disorder characterized by lesions with unusual lineage expression patterns. How these unusual cell-fate determination patterns are generated is unclear. We therefore investigated the role of the TSC in the Drosophila external sensory organ (ESO), a classic model of asymmetric cell division. In normal development, the sensory organ precursor cell divides asymmetrically through differential regulation of Notch signaling to produce a pIIa and a pIIb cell. We report here that inactivation of Tsc1 and overexpression of the Ras homolog Rheb each resulted in duplication of the bristle and socket cells, progeny of the pIIa cell, and loss of the neuronal cell, a product of pIIb cell division. Live imaging of ESO development revealed this cell-fate switch occurred at the pIIa-pIIb 2-cell stage. In human angiomyolipomas, benign renal neoplasms often found in tuberous sclerosis patients, we found evidence of Notch receptor cleavage and Notch target gene activation. Further, an angiomyolipoma-derived cell line carrying biallelic TSC2 mutations exhibited TSC2- and Rheb-dependent Notch activation. Finally, inhibition of Notch signaling using a gamma-secretase inhibitor suppressed proliferation of Tsc2-null rat cells in a xenograft model. Together, these data indicate that the TSC and Rheb regulate Notch-dependent cell-fate decision in Drosophila and Notch activity in mammalian cells and that Notch dysregulation may underlie some of the distinctive clinical and pathologic features of TSC.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Proteínas de Unión al GTP Monoméricas/fisiología , Neuropéptidos/fisiología , Receptores Notch/fisiología , Órganos de los Sentidos/embriología , Transducción de Señal/fisiología , Angiomiolipoma/metabolismo , Animales , Evolución Biológica , Drosophila , Femenino , Humanos , Péptidos y Proteínas de Señalización Intracelular , Riñón/metabolismo , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones SCID , Proteína Homóloga de Ras Enriquecida en el Cerebro , Ratas , Esclerosis Tuberosa/etiología
8.
Genetics ; 182(1): 407-10, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19279324

RESUMEN

Forty years ago, a high frequency of lethal giant larvae (lgl) alleles in wild populations of Drosophila melanogaster was reported. This locus has been intensively studied for its roles in epithelial polarity, asymmetric neural divisions, and restriction of tissue proliferation. Here, we identify a high frequency of lgl alleles in the Bloomington second chromosome deficiency kit and the University of California at Los Angeles Bruinfly FRT40A-lethal P collection. These unrecognized aberrations confound the use of these workhorse collections for phenotypic screening or genetic mapping. In addition, we determined that independent alleles of insensitive, reported to affect asymmetric cell divisions during sensory organ development, carry lgl deletions that are responsible for the observed phenotypes. Taken together, these results encourage the routine testing of second chromosome stocks for second-site alleles of lgl.


Asunto(s)
Alelos , Aberraciones Cromosómicas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Genes Letales/genética , Proteínas Supresoras de Tumor/genética , Animales , Drosophila melanogaster/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...