Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
NPJ Precis Oncol ; 8(1): 116, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783045

RESUMEN

Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous malignancy that remains a significant challenge in clinical management due to frequent treatment failures and pronounced therapy resistance. While metabolic dysregulation appears to be a critical factor in this scenario, comprehensive analyses of the metabolic HNSCC landscape and its impact on clinical outcomes are lacking. This study utilized transcriptomic data from four independent clinical cohorts to investigate metabolic heterogeneity in HNSCC and define metabolic pathway-based subtypes (MPS). In HPV-negative HNSCCs, MPS1 and MPS2 were identified, while MPS3 was enriched in HPV-positive cases. MPS classification was associated with clinical outcome post adjuvant radio(chemo)therapy, with MPS1 consistently exhibiting the highest risk of therapeutic failure. MPS1 was uniquely characterized by upregulation of glycan (particularly chondroitin/dermatan sulfate) metabolism genes. Immunohistochemistry and pilot mass spectrometry imaging analyses confirmed this at metabolite level. The histological context and single-cell RNA sequencing data identified the malignant cells as key contributors. Globally, MPS1 was distinguished by a unique transcriptomic landscape associated with increased disease aggressiveness, featuring motifs related to epithelial-mesenchymal transition, immune signaling, cancer stemness, tumor microenvironment assembly, and oncogenic signaling. This translated into a distinct histological appearance marked by extensive extracellular matrix remodeling, abundant spindle-shaped cancer-associated fibroblasts, and intimately intertwined populations of malignant and stromal cells. Proof-of-concept data from orthotopic xenotransplants replicated the MPS phenotypes on the histological and transcriptome levels. In summary, this study introduces a metabolic pathway-based classification of HNSCC, pinpointing glycan metabolism-enriched MPS1 as the most challenging subgroup that necessitates alternative therapeutic strategies.

2.
Dig Dis Sci ; 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652389

RESUMEN

BACKGROUND: Molecular changes in HCC development are largely unknown. As the liver plays a fundamental role in the body's metabolism, metabolic changes are to be expected. AIMS: We aimed to identify metabolomic changes in HCC in comparison to liver cirrhosis (LC) patients, which could potentially serve as novel biomarkers for HCC diagnosis and prognosis. METHODS: Metabolite expression from 38 HCC from the SORAMIC trial and 32 LC patients were analyzed by mass spectrometry. Metabolites with significant differences between LC and HCC at baseline were analyzed regarding expression over follow-up. In addition, association with overall survival was tested using univariate Cox proportional-hazard analysis. RESULTS: 41 metabolites showed differential expression between LC and HCC patients. 14 metabolites demonstrated significant changes in HCC patients during follow-up. Campesterol, lysophosphatidylcholine, octadecenoic and octadecadienoic acid, and furoylglycine showed a differential expression in the local ablation vs. palliative care group. High expression of eight metabolites (octadecenoic acid, 2-hydroxybutyrate, myo-inositol, isocitrate, erythronic acid, creatinine, pseudouridine, and erythrol) were associated with poor overall survival. The association between poor OS and octadecenoic acid and creatinine remained statistically significant even after adjusting for tumor burden and LC severity. CONCLUSION: Our findings give promising insides into the metabolic changes during HCC carcinogenesis and provide candidate biomarkers for future studies. Campesterol and furoylglycine in particular were identified as possible biomarkers for HCC progression. Moreover, eight metabolites were detected as predictors for poor overall survival.

3.
J Hepatol ; 79(2): 296-313, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37224925

RESUMEN

BACKGROUND & AIMS: The progression of non-alcoholic steatohepatitis (NASH) to fibrosis and hepatocellular carcinoma (HCC) is aggravated by auto-aggressive T cells. The gut-liver axis contributes to NASH, but the mechanisms involved and the consequences for NASH-induced fibrosis and liver cancer remain unknown. We investigated the role of gastrointestinal B cells in the development of NASH, fibrosis and NASH-induced HCC. METHODS: C57BL/6J wild-type (WT), B cell-deficient and different immunoglobulin-deficient or transgenic mice were fed distinct NASH-inducing diets or standard chow for 6 or 12 months, whereafter NASH, fibrosis, and NASH-induced HCC were assessed and analysed. Specific pathogen-free/germ-free WT and µMT mice (containing B cells only in the gastrointestinal tract) were fed a choline-deficient high-fat diet, and treated with an anti-CD20 antibody, whereafter NASH and fibrosis were assessed. Tissue biopsy samples from patients with simple steatosis, NASH and cirrhosis were analysed to correlate the secretion of immunoglobulins to clinicopathological features. Flow cytometry, immunohistochemistry and single-cell RNA-sequencing analysis were performed in liver and gastrointestinal tissue to characterise immune cells in mice and humans. RESULTS: Activated intestinal B cells were increased in mouse and human NASH samples and licensed metabolic T-cell activation to induce NASH independently of antigen specificity and gut microbiota. Genetic or therapeutic depletion of systemic or gastrointestinal B cells prevented or reverted NASH and liver fibrosis. IgA secretion was necessary for fibrosis induction by activating CD11b+CCR2+F4/80+CD11c-FCGR1+ hepatic myeloid cells through an IgA-FcR signalling axis. Similarly, patients with NASH had increased numbers of activated intestinal B cells; additionally, we observed a positive correlation between IgA levels and activated FcRg+ hepatic myeloid cells, as well the extent of liver fibrosis. CONCLUSIONS: Intestinal B cells and the IgA-FcR signalling axis represent potential therapeutic targets for the treatment of NASH. IMPACT AND IMPLICATIONS: There is currently no effective treatment for non-alcoholic steatohepatitis (NASH), which is associated with a substantial healthcare burden and is a growing risk factor for hepatocellular carcinoma (HCC). We have previously shown that NASH is an auto-aggressive condition aggravated, amongst others, by T cells. Therefore, we hypothesized that B cells might have a role in disease induction and progression. Our present work highlights that B cells have a dual role in NASH pathogenesis, being implicated in the activation of auto-aggressive T cells and the development of fibrosis via activation of monocyte-derived macrophages by secreted immunoglobulins (e.g., IgA). Furthermore, we show that the absence of B cells prevented HCC development. B cell-intrinsic signalling pathways, secreted immunoglobulins, and interactions of B cells with other immune cells are potential targets for combinatorial NASH therapies against inflammation and fibrosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Microbiota , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Ratones Endogámicos C57BL , Hígado/patología , Fibrosis , Cirrosis Hepática/complicaciones , Ratones Transgénicos , Inmunoglobulina A/metabolismo , Inmunoglobulina A/farmacología , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos
4.
Cancers (Basel) ; 15(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36980544

RESUMEN

PURPOSE: Identification of molecularly-defined cancer subgroups and targeting tumor-specific vulnerabilities have a strong potential to improve treatment response and patient outcomes but remain an unmet challenge of high clinical relevance, especially in head and neck squamous cell carcinoma (HNSC). EXPERIMENTAL DESIGN: We established a UCHL1-related gene set to identify and molecularly characterize a UCHL1-related subgroup within TCGA-HNSC by integrative analysis of multi-omics data. An extreme gradient boosting model was trained on TCGA-HNSC based on GSVA scores for gene sets of the MSigDB to robustly predict UCHL1-related cancers in other solid tumors and cancer cell lines derived thereof. Potential vulnerabilities of UCHL1-related cancer cells were elucidated by an in-silico drug screening approach. RESULTS: We established a 497-gene set, which stratified the TCGA-HNSC cohort into distinct subgroups with a UCHL1-related or other phenotype. UCHL1-related HNSC were characterized by higher frequencies of genomic alterations, which was also evident for UCHL1-related cancers of other solid tumors predicted by the classification model. These data indicated an impaired maintenance of genomic integrity and vulnerability for DNA-damaging treatment, which was supported by a favorable prognosis of UCHL1-related tumors after radiotherapy, and a higher sensitivity of UCHL1-related cancer cells to irradiation or DNA-damaging compounds (e.g., Oxaliplatin). CONCLUSION: Our study established UCHL1-related cancers as a novel subgroup across most solid tumor entities with a unique molecular phenotype and DNA-damaging treatment as a specific vulnerability, which requires further proof-of-concept in pre-clinical models and future clinical trials.

5.
Clin Transl Radiat Oncol ; 39: 100586, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36935856

RESUMEN

Purpose: In prostate cancer, the indication to irradiate the pelvic lymphatic pathways in clinical node-negative patients is solely based on clinical nomograms. To define biological risk patterns of lymphatic spread, we studied DNA-methylation and genomic copy number in primary tumors and corresponding lymph nodes metastases. Methods/Patients: DNA-methylation and genomic copy number profiles of primary tumors (PT) and paired synchronous lymph node metastases (LN) from Gleason Score (GS)-6/7a (n = 20 LN-positive, n = 20 LN-negative) and GS-9/10 patients (LN-positive n = 20) after prostatectomy and lymphonodectomy were analyzed. Results: GS-6/7a pN0 PTs and GS-6/7a pN1 PTs differed in histone H3K27me3/H3K9me3 mediated methylation. PTs compared to LNs, in both, GS-6/7a pN1 and GS-9/10 pN1 patients showed large differences in DNA-methylation mediated by histones H3K4me1/2, in addition to copy number changes of chromosomal regions 11q13.1, 14q11.2 and 15q26.1. Between GS-6/7a pN1 and GS-9/10 pN1 patients, methylation levels differed more when comparing LNs than PTs. 16q21-22.1 was specifically lost in GS-9/10 pN0 PTs. Immune system-related pathways characterized the differences between PTs and LNs in both GS-6/7a pN1 and GS-9/10 pN1 patients. Comparing PTs and LKs between GS-6/7a pN1 and GS-9/10 pN1 patients revealed altered transmembrane and G-protein-coupled receptor signaling. Conclusions: Our data suggest that progression of prostate cancer, including lymphatic spread, is associated with histone-mediated DNA-methylation and we hypothesize a methylation signature predicting lymphatic spread in GS-6/7a patients from primary tumors. Lymphatic spread in GS-6/7a patients, flanked by DNA-methylation and CNA alterations, appears to be more complex than in GS-9/10 patients, in whom the primary tumors already appear to bear lymph node metastasis-enabling alterations.

6.
Eur J Cancer ; 176: 41-49, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191385

RESUMEN

OBJECTIVE: HPV-associated head and neck cancer is correlated with favorable prognosis; however, its underlying biology is not fully understood. We propose an explainable convolutional neural network (CNN) classifier, DeepClassPathway, that predicts HPV-status and allows patient-specific identification of molecular pathways driving classifier decisions. METHODS: The CNN was trained to classify HPV-status on transcriptome data from 264 (13% HPV-positive) and tested on 85 (25% HPV-positive) head and neck squamous carcinoma patients after transformation into 2D-treemaps representing molecular pathways. Grad-CAM saliency was used to quantify pathways contribution to individual CNN decisions. Model stability was assessed by shuffling pathways within 2D-images. RESULTS: The classification performance of the CNN-ensembles achieved ROC-AUC/PR-AUC of 0.96/0.90 for all treemap variants. Quantification of the averaged pathway saliency heatmaps consistently identified KRAS, spermatogenesis, bile acid metabolism, and inflammation signaling pathways as the four most informative for classifying HPV-positive patients and MYC targets, epithelial-mesenchymal transition, and protein secretion pathways for HPV-negative patients. CONCLUSION: We have developed and applied an explainable CNN classification approach to transcriptome data from an oncology cohort with typical sample size that allows classification while accounting for the importance of molecular pathways in individual-level decisions.


Asunto(s)
Aprendizaje Profundo , Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Masculino , Humanos , Redes Neurales de la Computación , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/genética
7.
Mol Cancer ; 21(1): 178, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36076232

RESUMEN

BACKGROUND: Epidermal growth factor receptor (EGFR) is both a driver oncogene and a therapeutic target in advanced head and neck squamous cell carcinoma (HNSCC). However, response to EGFR treatment is inconsistent and lacks markers for treatment prediction. This study investigated EGFR-induced epithelial-to-mesenchymal transition (EMT) as a central parameter in tumor progression and identified novel prognostic and therapeutic targets, and a candidate predictive marker for EGFR therapy response. METHODS: Transcriptomic profiles were analyzed by RNA sequencing (RNA-seq) following EGFR-mediated EMT in responsive human HNSCC cell lines. Exclusive genes were extracted via differentially expressed genes (DEGs) and a risk score was determined through forward feature selection and Cox regression models in HNSCC cohorts. Functional characterization of selected prognostic genes was conducted in 2D and 3D cellular models, and findings were validated by immunohistochemistry in primary HNSCC. RESULTS: An EGFR-mediated EMT gene signature composed of n = 171 genes was identified in responsive cell lines and transferred to the TCGA-HNSCC cohort. A 5-gene risk score comprising DDIT4, FADD, ITGB4, NCEH1, and TIMP1 prognosticated overall survival (OS) in TCGA and was confirmed in independent HNSCC cohorts. The EGFR-mediated EMT signature was distinct from EMT hallmark and partial EMT (pEMT) meta-programs with a differing enrichment pattern in single malignant cells. Molecular characterization showed that ITGB4 was upregulated in primary tumors and metastases compared to normal mucosa and correlated with EGFR/MAPK activity in tumor bulk and single malignant cells. Preferential localization of ITGB4 together with its ligand laminin 5 at tumor-stroma interfaces correlated with increased tumor budding in primary HNSCC tissue sections. In vitro, ITGB4 knock-down reduced EGFR-mediated migration and invasion and ITGB4-antagonizing antibody ASC8 impaired 2D and 3D invasion. Furthermore, a logistic regression model defined ITGB4 as a predictive marker of progression-free survival in response to Cetuximab in recurrent metastatic HNSCC patients. CONCLUSIONS: EGFR-mediated EMT conveyed through MAPK activation contributes to HNSCC progression upon induction of migration and invasion. A 5-gene risk score based on a novel EGFR-mediated EMT signature prognosticated survival of HNSCC patients and determined ITGB4 as potential therapeutic and predictive target in patients with strong EGFR-mediated EMT.


Asunto(s)
Neoplasias de Cabeza y Cuello , Transcriptoma , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Receptores ErbB/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/genética , Humanos , Recurrencia Local de Neoplasia/genética , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
8.
Lab Invest ; 102(12): 1400-1405, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36045222

RESUMEN

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) allows spatial analysis of proteins, metabolites, or small molecules from tissue sections. Here, we present the simultaneous generation and analysis of MALDI-MSI, whole-exome sequencing (WES), and RNA-sequencing data from the same formalin-fixed paraffin-embedded (FFPE) tissue sections. Genomic DNA and total RNA were extracted from (i) untreated, (ii) hematoxylin-eosin (HE) stained, and (iii) MALDI-MSI-analyzed FFPE tissue sections from three head and neck squamous cell carcinomas. MALDI-MSI data were generated by a time-of-flight analyzer prior to preprocessing and visualization. WES data were generated using a low-input protocol followed by detection of single-nucleotide variants (SNVs), tumor mutational burden, and mutational signatures. The transcriptome was determined using 3'-RNA sequencing and was examined for similarities and differences between processing stages. All data met the commonly accepted quality criteria. Besides SNVs commonly identified between differently processed tissues, FFPE-typical artifactual variants were detected. Tumor mutational burden was in the same range for tissues from the same patient and mutational signatures were highly overlapping. Transcriptome profiles showed high levels of correlation. Our data demonstrate that simultaneous molecular profiling of MALDI-MSI-processed FFPE tissue sections at the transcriptome and exome levels is feasible and reliable.


Asunto(s)
Exoma , Neoplasias , Humanos , Adhesión en Parafina , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Fijación del Tejido/métodos , Exoma/genética , Formaldehído/química , Secuenciación del Exoma , Perfilación de la Expresión Génica , Biomarcadores de Tumor , ARN
9.
Cancers (Basel) ; 14(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35954409

RESUMEN

Human papillomavirus (HPV)-driven head and neck squamous cell carcinomas (HNSCC) generally have a more favourable prognosis. We hypothesized that HPV-associated HNSCC may be identified by an miRNA-signature according to their specific molecular pathogenesis, and be characterized by a unique transcriptome compared to HPV-negative HNSCC. We performed miRNA expression profiling of two p16/HPV DNA characterized HNSCC cohorts of patients treated by adjuvant radio(chemo)therapy (multicentre DKTK-ROG n = 128, single-centre LMU-KKG n = 101). A linear model predicting HPV status built in DKTK-ROG using lasso-regression was tested in LMU-KKG. LMU-KKG tumours (n = 30) were transcriptome profiled for differential gene expression and miRNA-integration. A 24-miRNA signature predicted HPV-status with 94.53% accuracy (AUC: 0.99) in DKTK-ROG, and 86.14% (AUC: 0.86) in LMU-KKG. The prognostic values of 24-miRNA- and p16/HPV DNA status were comparable. Combining p16/HPV DNA and 24-miRNA status allowed patient sub-stratification and identification of an HPV-associated patient subgroup with impaired overall survival. HPV-positive tumours showed downregulated MAPK, Estrogen, EGFR, TGFbeta, WNT signaling activity. miRNA-mRNA integration revealed HPV-specific signaling pathway regulation, including PD-L1 expression/PD-1 checkpoint pathway in cancer in HPV-associated HNSCC. Integration of clinically established p16/HPV DNA with 24-miRNA signature status improved clinically relevant risk stratification, which might be considered for future clinical decision-making with respect to treatment de-escalation in HPV-associated HNSCC.

10.
Clin Cancer Res ; 28(5): 1038-1052, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965946

RESUMEN

PURPOSE: The genetic relatedness between primary and recurrent head and neck squamous cell carcinomas (HNSCC) reflects the extent of heterogeneity and therapy-driven selection of tumor subpopulations. Yet, current treatment of recurrent HNSCC ignores the molecular characteristics of therapy-resistant tumor populations. EXPERIMENTAL DESIGN: From 150 tumors, 74 primary HNSCCs were RNA sequenced and 38 matched primary/recurrent tumor pairs were both whole-exome and RNA sequenced. Transcriptome analysis determined the predominant classical (CL), basal (BA), and inflamed-mesenchymal (IMS) transcriptional subtypes according to an established classification. Genomic alterations and clonal compositions of tumors were evaluated from whole-exome data. RESULTS: Although CL and IMS subtypes were more common in primary HNSCC with low recurrence rates, the BA subtype was more prevalent and stable in recurrent tumors. The BA subtype was associated with a transcriptional signature of partial epithelial-to-mesenchymal transition (p-EMT) and early recurrence. In 44% of matched cases, the dominant subtype changed from primary to recurrent tumors, preferably from IMS to BA or CL. Expression analysis of prognostic gene sets identified upregulation of hypoxia, p-emt, and radiotherapy resistance signatures and downregulation of tumor inflammation in recurrences compared with index tumors. A relevant subset of primary/recurrent tumor pairs presented no evidence for a common clonal origin. CONCLUSIONS: Our study showed a high degree of genetic and transcriptional heterogeneity between primary/recurrent tumors, suggesting therapy-related selection of a transcriptional subtype with characteristics unfavorable for therapy. We conclude that therapy decisions should be based on genetic and transcriptional characteristics of recurrences rather than primary tumors to enable optimally tailored treatment strategies.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Neoplasias de Cabeza y Cuello/genética , Humanos , Recurrencia Local de Neoplasia/genética , ARN , Carcinoma de Células Escamosas de Cabeza y Cuello/genética
11.
Int J Cancer ; 150(4): 603-616, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34648658

RESUMEN

Biomarkers with relevance for loco-regional therapy are needed in human papillomavirus negative aka HPV(-) head and neck squamous cell carcinoma (HNSCC). Based on the premise that DNA methylation pattern is highly conserved, we sought to develop a reliable and robust methylome-based classifier identifying HPV(-) HNSCC patients at risk for loco-regional recurrence (LR) and all-event progression after postoperative radiochemotherapy (PORT-C). The training cohort consisted of HPV-DNA negative HNSCC patients (n = 128) homogeneously treated with PORT-C in frame of the German Cancer Consortium-Radiation Oncology Group (DKTK-ROG) multicenter biomarker trial. DNA Methylation analysis was performed using Illumina 450 K and 850 K-EPIC microarray technology. The performance of the classifier was integrated with a series of biomarkers studied in the training set namely hypoxia-, 5-microRNA (5-miR), stem-cell gene-expression signatures and immunohistochemistry (IHC)-based immunological characterization of tumors (CD3/CD8/PD-L1/PD1). Validation occurred in an independent cohort of HPV(-) HNSCC patients, pooled from two German centers (n = 125). We identified a 38-methylation probe-based HPV(-) Independent Classifier of disease Recurrence (HICR) with high prognostic value for LR, distant metastasis and overall survival (P < 10-9 ). HICR remained significant after multivariate analysis adjusting for anatomical site, lymph node extracapsular extension (ECE) and size (T-stage). HICR high-risk tumors were enriched for younger patients with hypoxic tumors (15-gene signature) and elevated 5-miR score. After adjustment for hypoxia and 5-miR covariates, HICR maintained predicting all endpoints. HICR provides a novel mean for assessing the risk of LR in HPV(-) HNSCC patients treated with PORT-C and opens a new opportunity for biomarker-assisted stratification and therapy adaptation in these patients.


Asunto(s)
Quimioradioterapia , Metilación de ADN , ADN de Neoplasias/metabolismo , Neoplasias de Cabeza y Cuello/genética , Recurrencia Local de Neoplasia/etiología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Terapia Combinada , Femenino , Neoplasias de Cabeza y Cuello/inmunología , Neoplasias de Cabeza y Cuello/terapia , Neoplasias de Cabeza y Cuello/virología , Humanos , Masculino , MicroARNs/análisis , Persona de Mediana Edad , Papillomaviridae/aislamiento & purificación , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/virología
12.
Cell Death Dis ; 12(12): 1162, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34911941

RESUMEN

Resistance against radio(chemo)therapy-induced cell death is a major determinant of oncological treatment failure and remains a perpetual clinical challenge. The underlying mechanisms are manifold and demand for comprehensive, cancer entity- and subtype-specific examination. In the present study, resistance against radiotherapy was systematically assessed in a panel of human head-and-neck squamous cell carcinoma (HNSCC) cell lines and xenotransplants derived thereof with the overarching aim to extract master regulators and potential candidates for mechanism-based pharmacological targeting. Clonogenic survival data were integrated with molecular and functional data on DNA damage repair and different cell fate decisions. A positive correlation between radioresistance and early induction of HNSCC cell senescence accompanied by NF-κB-dependent production of distinct senescence-associated cytokines, particularly ligands of the CXCR2 chemokine receptor, was identified. Time-lapse microscopy and medium transfer experiments disclosed the non-cell autonomous, paracrine nature of these mechanisms, and pharmacological interference with senescence-associated cytokine production by the NF-κB inhibitor metformin significantly improved radiotherapeutic performance in vitro and in vivo. With regard to clinical relevance, retrospective analyses of TCGA HNSCC data and an in-house HNSCC cohort revealed that elevated expression of CXCR2 and/or its ligands are associated with impaired treatment outcome. Collectively, our study identifies radiation-induced tumor cell senescence and the NF-κB-dependent production of distinct senescence-associated cytokines as critical drivers of radioresistance in HNSCC whose therapeutic targeting in the context of multi-modality treatment approaches should be further examined and may be of particular interest for the subgroup of patients with elevated expression of the CXCR2/ligand axis.


Asunto(s)
Senescencia Celular , Neoplasias de Cabeza y Cuello , Tolerancia a Radiación , Receptores de Interleucina-8B , Carcinoma de Células Escamosas de Cabeza y Cuello , Línea Celular Tumoral , Citocinas , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/radioterapia , Humanos , Ligandos , FN-kappa B , Receptores de Interleucina-8B/metabolismo , Estudios Retrospectivos , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia
13.
Nat Protoc ; 16(11): 4963-4991, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34697469

RESUMEN

The clonogenic assay measures the capacity of single cells to form colonies in vitro. It is widely used to identify and quantify self-renewing mammalian cells derived from in vitro cultures as well as from ex vivo tissue preparations of different origins. Varying research questions and the heterogeneous growth requirements of individual cell model systems led to the development of several assay principles and formats that differ with regard to their conceptual setup, 2D or 3D culture conditions, optional cytotoxic treatments and subsequent mathematical analysis. The protocol presented here is based on the initial clonogenic assay protocol as developed by Puck and Marcus more than 60 years ago. It updates and extends the 2006 Nature Protocols article by Franken et al. It discusses different strategies and principles to analyze clonogenic growth in vitro and presents the clonogenic assay in a modular protocol framework enabling a diversity of formats and measures to optimize determination of clonogenic growth parameters. We put particular focus on the phenomenon of cellular cooperation and consideration of how this can affect the mathematical analysis of survival data. This protocol is applicable to any mammalian cell model system from which single-cell suspensions can be prepared and which contains at least a small fraction of cells with self-renewing capacity in vitro. Depending on the cell system used, the entire procedure takes ~2-10 weeks, with a total hands-on time of <20 h per biological replicate.


Asunto(s)
Modelos Biológicos
14.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209135

RESUMEN

Radiation-induced damage to normal lung parenchyma remains a dose-limiting factor in thorax-associated radiotherapy (RT). Severe early and late complications with lungs can increase the risk of morbidity in cancer patients after RT. Herein, senescence of lung epithelial cells following RT-induced cellular stress, or more precisely the respective altered secretory profile, the senescence-associated secretory phenotype (SASP), was suggested as a central process for the initiation and progression of pneumonitis and pulmonary fibrosis. We previously reported that abrogation of certain aspects of the secretome of senescent lung cells, in particular, signaling inhibition of the SASP-factor Ccl2/Mcp1 mediated radioprotection especially by limiting endothelial dysfunction. Here, we investigated the therapeutic potential of a combined metformin treatment to protect normal lung tissue from RT-induced senescence and associated lung injury using a preclinical mouse model of radiation-induced pneumopathy. Metformin treatment efficiently limited RT-induced senescence and SASP expression levels, thereby limiting vascular dysfunctions, namely increased vascular permeability associated with increased extravasation of circulating immune and tumor cells early after irradiation (acute effects). Complementary in vitro studies using normal lung epithelial cell lines confirmed the senescence-limiting effect of metformin following RT finally resulting in radioprotection, while fostering RT-induced cellular stress of cultured malignant epithelial cells accounting for radiosensitization. The radioprotective action of metformin for normal lung tissue without simultaneous protection or preferable radiosensitization of tumor tissue might increase tumor control probabilities and survival because higher radiation doses could be used.


Asunto(s)
Bronquios , Células Epiteliales , Metformina/farmacología , Traumatismos Experimentales por Radiación , Protectores contra Radiación/farmacología , Animales , Bronquios/metabolismo , Bronquios/patología , Senescencia Celular/efectos de los fármacos , Senescencia Celular/efectos de la radiación , Células Epiteliales/metabolismo , Células Epiteliales/patología , Ratones , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/prevención & control
15.
Front Oncol ; 11: 612354, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33816244

RESUMEN

Radiotherapy is an essential component of multi-modality treatment of glioblastoma (GBM). However, treatment failure and recurrence are frequent and give rise to the dismal prognosis of this aggressive type of primary brain tumor. A high level of inherent treatment resistance is considered to be the major underlying reason, stemming from constantly activated DNA damage response (DDR) mechanisms as a consequence of oncogene overexpression, persistent replicative stress, and other so far unknown reasons. The molecular chaperone heat shock protein 90 (HSP90) plays an important role in the establishment and maintenance of treatment resistance, since it crucially assists the folding and stabilization of various DDR regulators. Accordingly, inhibition of HSP90 represents a multi-target strategy to interfere with DDR function and to sensitize cancer cells to radiotherapy. Using NW457, a pochoxime-based HSP90 inhibitor with favorable brain pharmacokinetic profile, we show here that HSP90 inhibition at low concentrations with per se limited cytotoxicity leads to downregulation of various DNA damage response factors on the protein level, distinct transcriptomic alterations, impaired DNA damage repair, and reduced clonogenic survival in response to ionizing irradiation in glioblastoma cells in vitro. In vivo, HSP90 inhibition by NW457 improved the therapeutic outcome of fractionated CBCT-based irradiation in an orthotopic, syngeneic GBM mouse model, both in terms of tumor progression and survival. Nevertheless, in view of the promising in vitro results the in vivo efficacy was not as strong as expected, although apart from the radiosensitizing effects HSP90 inhibition also reduced irradiation-induced GBM cell migration and tumor invasiveness. Hence, our findings identify the combination of HSP90 inhibition and radiotherapy in principle as a promising strategy for GBM treatment whose performance needs to be further optimized by improved inhibitor substances, better formulations and/or administration routes, and fine-tuned treatment sequences.

16.
Endocr Relat Cancer ; 28(3): 213-224, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33608487

RESUMEN

Thyroid carcinoma incidence rates in western societies are among the fastest rising, compared to all malignant tumors over the past two decades. While risk factors such as age and exposure to ionizing radiation are known, early-state carcinogenic processes or pre-lesions are poorly understood or unknown. This study aims at the identification and characterization of early-state radiation-associated neoplastic processes by histologic and transcriptomic analyses of thyroid tissues derived from a mouse model. Comprehensive histological examination of 246 thyroids (164 exposed, 82 non-exposed) was carried out. Proliferative and normal tissues from exposed cases and normal tissue from non-exposed cases were collected by laser-capture microdissection, followed by RNAseq transcriptomic profiling using a low input 3'-library preparation protocol, differential gene expression analysis and functional association by gene set enrichment analysis. Nine exposed samples exhibited proliferative lesions, while none of the non-exposed samples showed histological abnormalities, indicating an association of ionizing radiation exposure with histological abnormalities. Activated immune response signaling and deregulated metabolic processes were observed in irradiated tissue with normal histology compared to normal tissue from non-exposed samples. Proliferative lesions compared to corresponding normal tissues showed enrichment for mainly proliferation-associated gene sets. Consistently, proliferative lesion samples from exposed mice showed elevated proliferation-associated signaling and deregulated metabolic processes compared to normal samples from non-exposed mice. Our findings suggest that a molecular deregulation may be detectable in histologically normal thyroid tissues and in early proliferative lesions in the frame of multi-step progression from irradiated normal tissue to tumorous lesions.


Asunto(s)
Neoplasias de la Tiroides , Transcriptoma , Animales , Carcinogénesis , Perfilación de la Expresión Génica , Ratones
17.
Int J Radiat Biol ; 97(4): 529-540, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33464160

RESUMEN

PURPOSE: The long-term effect of low and moderate doses of ionizing radiation on the lens is still a matter of debate and needs to be evaluated in more detail. MATERIAL AND METHODS: We conducted a detailed histological analysis of eyes from B6C3F1 mice cohorts after acute gamma irradiation (60Co source; 0.063 Gy/min) at young adult age of 10 weeks with doses of 0.063, 0.125, and 0.5 Gy. Sham irradiated (0 Gy) mice were used as controls. To test for genetic susceptibility heterozygous Ercc2 mutant mice were used and compared to wild-type mice of the same strain background. Mice of both sexes were included in all cohorts. Eyes were collected 4 h, 12, 18 and 24 months after irradiation. For a better understanding of the underlying mechanisms, metabolomics analyses were performed in lenses and plasma samples of the same mouse cohorts at 4 and 12 h as well as 12, 18 and 24 months after irradiation. For this purpose, a targeted analysis was chosen. RESULTS: This analysis revealed histological changes particularly in the posterior part of the lens that rarely can be observed by using Scheimpflug imaging, as we reported previously. We detected a significant increase of posterior subcapsular cataracts (PSCs) 18 and 24 months after irradiation with 0.5 Gy (odds ratio 9.3; 95% confidence interval 2.1-41.3) independent of sex and genotype. Doses below 0.5 Gy (i.e. 0.063 and 0.125 Gy) did not significantly increase the frequency of PSCs at any time point. In lenses, we observed a clear effect of sex and aging but not of irradiation or genotype. While metabolomics analyses of plasma from the same mice showed only a sex effect. CONCLUSIONS: This article demonstrates a significant radiation-induced increase in the incidence of PSCs, which could not be identified using Scheimpflug imaging as the only diagnostic tool.


Asunto(s)
Catarata/etiología , Traumatismos por Radiación/etiología , Animales , Catarata/genética , Relación Dosis-Respuesta en la Radiación , Femenino , Heterocigoto , Cristalino/efectos de la radiación , Masculino , Ratones , Traumatismos por Radiación/genética
18.
Mol Oncol ; 15(4): 1040-1053, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340247

RESUMEN

Head and neck squamous cell carcinomas (HNSCCs) have poor clinical outcome owing to therapy resistance and frequent recurrences that are among others attributable to tumor cells in partial epithelial-to-mesenchymal transition (pEMT). We compared side-by-side software-based and visual quantification of immunohistochemistry (IHC) staining of epithelial marker EpCAM and EMT regulator Slug in n = 102 primary HNSCC to assess optimal analysis protocols. IHC scores incorporated expression levels and percentages of positive cells. Digital and visual evaluation of membrane-associated EpCAM yielded correlating scorings, whereas visual evaluation of nuclear Slug resulted in significantly higher overall scores. Multivariable Cox proportional hazard analysis defined the median EpCAM expression levels resulting from visual quantification as an independent prognostic factor of overall survival. Slug expression levels resulting from digital quantification were an independent prognostic factor of recurrence-free survival, locoregional recurrence-free survival, and disease-specific survival. Hence, we propose to use visual assessment for the membrane-associated EpCAM protein, whereas nuclear protein Slug assessment was more accurate following digital measurement.


Asunto(s)
Molécula de Adhesión Celular Epitelial/genética , Transición Epitelial-Mesenquimal , Factores de Transcripción de la Familia Snail/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/diagnóstico , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Femenino , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Adulto Joven
19.
Int J Radiat Biol ; 97(2): 156-169, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33264576

RESUMEN

PURPOSE: The increasing use of low-dose ionizing radiation in medicine requires a systematic study of its long-term effects on the brain, behaviour and its possible association with neurodegenerative disease vulnerability. Therefore, we analysed the long-term effects of a single low-dose irradiation exposure at 10 weeks of age compared to medium and higher doses on locomotor, emotion-related and sensorimotor behaviour in mice as well as on hippocampal glial cell populations. MATERIALS AND METHODS: We determined the influence of radiation dose (0, 0.063, 0.125 or 0.5 Gy), time post-irradiation (4, 12 and 18 months p.i.), sex and genotype (wild type versus mice with Ercc2 DNA repair gene point mutation) on behaviour. RESULTS: The high dose (0.5 Gy) had early-onset adverse effects at 4 months p.i. on sensorimotor recruitment and late-onset negative locomotor effects at 12 and 18 months p.i. Notably, the low dose (0.063 Gy) produced no early effects but subtle late-onset (18 months) protective effects on sensorimotor recruitment and exploratory behaviour. Quantification and morphological characterization of the microglial and the astrocytic cells of the dentate gyrus 24 months p.i. indicated heightened immune activity after high dose irradiation (0.125 and 0.5 Gy) while conversely, low dose (0.063 Gy) induced more neuroprotective features. CONCLUSION: This is one of the first studies demonstrating such long-term and late-onset effects on brain and behaviour after a single radiation event in adulthood.


Asunto(s)
Conducta Animal/efectos de la radiación , Neuroglía/efectos de la radiación , Animales , Relación Dosis-Respuesta en la Radiación , Femenino , Hipocampo/efectos de la radiación , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Actividad Motora/efectos de la radiación , Irradiación Corporal Total , Proteína de la Xerodermia Pigmentosa del Grupo D/genética
20.
Neurooncol Adv ; 2(1): vdaa137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33305269

RESUMEN

BACKGROUND: The potential benefit of risk stratification using a 4-miRNA signature in combination with MGMT promoter methylation in IDH1/2 wild-type glioblastoma patients was assessed. METHODS: Primary tumors from 102 patients with comparable treatment from the LMU Munich (n = 37), the University Hospital Düsseldorf (n = 33), and The Cancer Genome Atlas (n = 32) were included. Risk groups were built using expressions of hsa-let-7a-5p, hsa-let-7b-5p, hsa-miR-615-5p, and hsa-miR-125a-5p to assess prognostic performance in overall survival (OS). MGMT promoter methylation and age were considered as cofactors. Integrated miRNA, DNA methylome, and transcriptome analysis were used to explore the functional impact of signature miRNAs. RESULTS: The 4-miRNA signature defined high-risk (n = 46, median OS: 15.8 months) and low-risk patients (n = 56, median OS: 20.7 months; univariable Cox proportional hazard analysis: hazard ratio [HR]: 1.8, 95% confidence interval [CI]: 1.14-2.83, P = .01). The multivariable Cox proportional hazard model including the 4-miRNA signature (P = .161), MGMT promoter methylation (P < .001), and age (P = .034) significantly predicted OS (Log-rank P < .0001). Likewise to clinical routine, analysis was performed for younger (≤60 years, n = 50, median OS: 20.2 months) and older patients (>60 years, n = 52, median OS: 15.8) separately. In younger patients, the 4-miRNA signature had prognostic value (HR: 1.92, 95% CI: 0.93-3.93, P = .076). Particularly, younger, MGMT methylated, 4-miRNA signature low-risk patients (n = 18, median OS: 37.4 months) showed significantly improved survival, compared to other younger patients (n = 32, OS 18.5 months; HR: 0.33, 95% CI: 0.15-0.71, P = .003). Integrated data analysis revealed 4-miRNA signature-associated genes and pathways. CONCLUSION: The prognostic 4-miRNA signature in combination with MGMT promoter methylation improved risk stratification with the potential for therapeutic substratification, especially of younger patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...