Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Shock ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012766

RESUMEN

BACKGROUND: Trauma and blood loss are frequently associated with organ failure, immune dysfunction, and a high risk of secondary bacterial lung infections. We aim to test if plasma metabolomic flux and monocyte bioenergetics are altered in association with trauma and related secondary infections. METHODS: Plasma samples were collected from trauma patients at three time points: days 0, 3, and 7 post-admission. Metabolites (140) were measured in plasma from trauma survivors (n = 24) and healthy control individuals (HC, n = 10). Further analysis within the trauma cohort included subsets of trauma/infection-negative (TIneg, n = 12) and trauma/infection-positive patients (TIpos, n = 12). The bioenergetic profile in monocytes was determined using mitochondrial and glycolytic stress tests. RESULTS: In the trauma cohort, significant alterations were observed in 29 metabolites directly affecting 11 major metabolic pathways, while 34 metabolite alterations affected 8 pathways in TIpos, versus TIneg patients. The most altered metabolic pathways included protein synthesis, the urea cycle/arginine metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, and carnitine compound family. In monocytes from trauma patients, reduced mitochondrial indices and loss of glycolytic plasticity were consistent with an altered profile of plasma metabolites in the TCA cycle and glycolysis. CONCLUSIONS: Our study highlights that the metabolic profile is significantly and persistently affected by trauma and related infections. Among trauma survivors, metabolic alterations in plasma were associated with reduced monocyte bioenergetics. These exploratory findings establish a groundwork for future clinical studies aimed at enhancing our understanding of the interplay between metabolic/bioenergetic alterations associated with trauma and secondary bacterial infections.

3.
Cells ; 12(15)2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37566086

RESUMEN

Cellular senescence contributes importantly to aging and aging-related diseases, including idiopathic pulmonary fibrosis (IPF). Alveolar epithelial type II (ATII) cells are progenitors of alveolar epithelium, and ATII cell senescence is evident in IPF. Previous studies from this lab have shown that increased expression of plasminogen activator inhibitor 1 (PAI-1), a serine protease inhibitor, promotes ATII cell senescence through inducing p53, a master cell cycle repressor, and activating p53-p21-pRb cell cycle repression pathway. In this study, we further show that PAI-1 binds to proteasome components and inhibits proteasome activity and p53 degradation in human lung epithelial A549 cells and primary mouse ATII cells. This is associated with a senescence phenotype of these cells, manifested as increased p53 and p21 expression, decreased phosphorylated retinoblastoma protein (pRb), and increased senescence-associated beta-galactose (SA-ß-gal) activity. Moreover, we find that, although overexpression of wild-type PAI-1 (wtPAI-1) or a secretion-deficient, mature form of PAI-1 (sdPAI-1) alone induces ATII cell senescence (increases SA-ß-gal activity), only wtPAI-1 induces p53, suggesting that the premature form of PAI-1 is required for the interaction with the proteasome. In summary, our data indicate that PAI-1 can bind to proteasome components and thus inhibit proteasome activity and p53 degradation in ATII cells. As p53 is a master cell cycle repressor and PAI-1 expression is increased in many senescent cells, the results from this study will have a significant impact not only on ATII cell senescence/lung fibrosis but also on the senescence of other types of cells in different diseases.


Asunto(s)
Células Epiteliales Alveolares , Fibrosis Pulmonar Idiopática , Inhibidor 1 de Activador Plasminogénico , Proteína p53 Supresora de Tumor , Animales , Humanos , Ratones , Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
4.
Respir Res ; 24(1): 185, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37438806

RESUMEN

BACKGROUND: Bacterial pneumonia and related lung injury are among the most frequent causes of mortality in intensive care units, but also inflict serious and prolonged respiratory complications among survivors. Given that endoplasmic reticulum (ER) stress is a hallmark of sepsis-related alveolar epithelial cell (AEC) dysfunction, we tested if AMP-activated protein kinase (AMPK) affects recovery from ER stress and apoptosis of AECs during post-bacterial infection. METHODS: In a murine model of lung injury by P. aeruginosa non-lethal infection, therapeutic interventions included AMPK activator metformin or GSK-3ß inhibitor Tideglusib for 96 h. Recovery from AEC injury was evidenced by accumulation of soluble T-1α (AEC Type 1 marker) in BAL fluids along with fluorescence analysis of ER-stress (CHOP) and apoptosis (TUNEL) in lung sections. AMPK phosphorylation status and mediators of ER stress were determined via Immunoblot analysis from lung homogenates. Macrophage-dependent clearance of apoptotic cells was determined using flow cytometry assay. RESULTS: P. aeruginosa-induced lung injury resulted in accumulation of neutrophils and cellular debris in the alveolar space along with persistent (96 h) ER-stress and apoptosis of AECs. While lung infection triggered AMPK inactivation (de-phosphorylation of Thr172-AMPK), metformin and Tideglusib promptly restored the AMPK activation status. In post infected mice, AMPK activation reduced indices of lung injury, ER stress and related apoptosis of AECs, as early as 24 h post administration of AMPK activators. In addition, we demonstrate that the extent of apoptotic cell accumulation is also dependent on AMPK-mediated clearance of apoptotic cells by macrophages. CONCLUSIONS: Our study provides important insights into AMPK function in the preservation of AEC viability after bacterial infection, in particular due reduction of ER-stress and apoptosis, thereby promoting effective recovery from lung injury after pneumonia.


Asunto(s)
Células Epiteliales Alveolares , Lesión Pulmonar , Animales , Ratones , Proteínas Quinasas Activadas por AMP , Glucógeno Sintasa Quinasa 3 beta , Lesión Pulmonar/tratamiento farmacológico , Apoptosis
6.
Aging Cell ; 21(9): e13674, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934931

RESUMEN

Mitochondrial dysfunction has been associated with age-related diseases, including idiopathic pulmonary fibrosis (IPF). We provide evidence that implicates chronic elevation of the mitochondrial anion carrier protein, uncoupling protein-2 (UCP2), in increased generation of reactive oxygen species, altered redox state and cellular bioenergetics, impaired fatty acid oxidation, and induction of myofibroblast senescence. This pro-oxidant senescence reprogramming occurs in concert with conventional actions of UCP2 as an uncoupler of oxidative phosphorylation with dissipation of the mitochondrial membrane potential. UCP2 is highly expressed in human IPF lung myofibroblasts and in aged fibroblasts. In an aging murine model of lung fibrosis, the in vivo silencing of UCP2 induces fibrosis regression. These studies indicate a pro-fibrotic function of UCP2 in chronic lung disease and support its therapeutic targeting in age-related diseases associated with impaired tissue regeneration and organ fibrosis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Miofibroblastos , Proteína Desacopladora 2 , Anciano , Animales , Fibroblastos/metabolismo , Fibrosis , Humanos , Fibrosis Pulmonar Idiopática/metabolismo , Pulmón/metabolismo , Ratones , Miofibroblastos/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo
7.
Lab Invest ; 101(11): 1467-1474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34504306

RESUMEN

The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.


Asunto(s)
Fagosomas/fisiología , Neumonía Bacteriana/complicaciones , Infecciones por Pseudomonas/complicaciones , Sepsis/inmunología , Factores de Transcripción/deficiencia , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Tolerancia Inmunológica , Pulmón/metabolismo , Masculino , Ratones Endogámicos C57BL , Neumonía Bacteriana/metabolismo , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa , Sepsis/microbiología
8.
Elife ; 102021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34528872

RESUMEN

Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or 'alveolospheres' with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.


Many tissues in the body are capable of regenerating by replacing defective or worn-out cells with new ones. This process relies heavily on stem cells, which are precursor cells that lack a set role in the body and can develop into different types of cells under the right conditions. Tissues often have their own pool of stem cells that they use to replenish damaged cells. But as we age, this regeneration process becomes less effective. Many of our organs, such as the lungs, are lined with epithelial cells. These cells form a protective barrier, controlling what substances get in and out of the tissue. Alveoli are parts of the lungs that allow oxygen and carbon dioxide to move between the blood and the air in the lungs. And alveoli rely on an effective epithelial cell lining to work properly. To replenish these epithelial cells, alveoli have pockets, in which a type of epithelial cell, known as AEC2, lives. These cells can serve as stem cells, developing into a different type of cell under the right conditions. To work properly, AEC2 cells require close interactions with another type of cell called L-MSC, which supports the maintenance of other cells and also has the ability to differentiate into several other cell types. Both cell types can be found close together in these stem cell pockets. So far, it has been unclear how aging affects how these cells work together to replenish the epithelial lining of the alveoli. To investigate, Chanda et al. probed AEC2s and L-MSCs in the alveoli of young and old mice. The researchers collected both cell types from young (2-3 months) and aged (22-24 months) mice. Various combinations of these cells were grown to form 3D structures, mimicking how the cells grow in the lungs. Young L-MSCs formed normal 3D structures with both young and aged AEC2 cells. But aged L-MSCs developed abnormal, loose structures with AEC2 cells (both young and old cells). Aged L-MSCs were found to have higher levels of an enzyme (called Nox4) that produces oxidants and other 'pro-aging' factors, compared to young L-MSCs. However, reducing Nox4 levels in aged L-MSCs allowed these cells to form normal 3D structures with young AEC2 cells, but not aged AEC2 cells. These findings highlight the varying effects specific stem cells have, and how their behaviour is affected by pro-aging factors. Moreover, the pro-aging enzyme Nox4 shows potential as a therapeutic target ­ downregulating its activity may reverse critical effects of aging in cells.


Asunto(s)
Células Epiteliales Alveolares , Senescencia Celular/fisiología , Células Madre Mesenquimatosas , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/fisiología , Animales , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Organoides/citología , Organoides/metabolismo , Estrés Oxidativo
9.
Nat Aging ; 1(2): 205-217, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34386777

RESUMEN

Aging is a risk factor for progressive fibrotic disorders involving diverse organ systems, including the lung. Idiopathic pulmonary fibrosis, an age-associated degenerative lung disorder, is characterized by persistence of apoptosis-resistant myofibroblasts. In this report, we demonstrate that sirtuin-3 (SIRT3), a mitochondrial deacetylase, is downregulated in lungs of IPF human subjects and in mice subjected to lung injury. Over-expression of the SIRT3 cDNA via airway delivery restored capacity for fibrosis resolution in aged mice, in association with activation of the forkhead box transcription factor, FoxO3a, in fibroblasts, upregulation of pro-apoptotic members of the Bcl-2 family, and recovery of apoptosis susceptibility. While transforming growth factor-ß1 reduced levels of SIRT3 and FoxO3a in lung fibroblasts, cell non-autonomous effects involving macrophage secreted products were necessary for SIRT3-mediated activation of FoxO3a. Together, these findings reveal a novel role of SIRT3 in pro-resolution macrophage functions that restore susceptibility to apoptosis in fibroblasts via a FoxO3a-dependent mechanism.


Asunto(s)
Fibrosis Pulmonar Idiopática , Sirtuina 3 , Humanos , Animales , Ratones , Sirtuina 3/genética , Pulmón/metabolismo , Fibrosis , Fibrosis Pulmonar Idiopática/metabolismo , Expresión Génica
10.
Sci Rep ; 11(1): 12387, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34117280

RESUMEN

Metabolic and bioenergetic plasticity of immune cells is essential for optimal responses to bacterial infections. AMPK and Parkin ubiquitin ligase are known to regulate mitochondrial quality control mitophagy that prevents unwanted inflammatory responses. However, it is not known if this evolutionarily conserved mechanism has been coopted by the host immune defense to eradicate bacterial pathogens and influence post-sepsis immunosuppression. Parkin, AMPK levels, and the effects of AMPK activators were investigated in human leukocytes from sepsis survivors as well as wild type and Park2-/- murine macrophages. In vivo, the impact of AMPK and Parkin was determined in mice subjected to polymicrobial intra-abdominal sepsis and secondary lung bacterial infections. Mice were treated with metformin during established immunosuppression. We showed that bacteria and mitochondria share mechanisms of autophagic killing/clearance triggered by sentinel events that involve depolarization of mitochondria and recruitment of Parkin in macrophages. Parkin-deficient mice/macrophages fail to form phagolysosomes and kill bacteria. This impairment of host defense is seen in the context of sepsis-induced immunosuppression with decreased levels of Parkin. AMPK activators, including metformin, stimulate Parkin-independent autophagy and bacterial killing in leukocytes from post-shock patients and in lungs of sepsis-immunosuppressed mice. Our results support a dual role of Parkin and AMPK in the clearance of dysfunctional mitochondria and killing of pathogenic bacteria, and explain the immunosuppressive phenotype associated Parkin and AMPK deficiency. AMPK activation appeared to be a crucial therapeutic target for the macrophage immunosuppressive phenotype and to reduce severity of secondary bacterial lung infections and respiratory failure.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia , Infecciones Bacterianas/inmunología , Enfermedades Pulmonares/inmunología , Sepsis/inmunología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Humanos , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...