Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Nat Cardiovasc Res ; 3(6): 666-684, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39196225

RESUMEN

Cardiomyocyte maturation is crucial for generating adult cardiomyocytes and the application of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs). However, regulation at the cis-regulatory element level and its role in heart disease remain unclear. Alpha-actinin 2 (ACTN2) levels increase during CM maturation. In this study, we investigated a clinically relevant, conserved ACTN2 enhancer's effects on CM maturation using hPSC and mouse models. Heterozygous ACTN2 enhancer deletion led to abnormal CM morphology, reduced function and mitochondrial respiration. Transcriptomic analyses in vitro and in vivo showed disrupted CM maturation and upregulated anabolic mammalian target for rapamycin (mTOR) signaling, promoting senescence and hindering maturation. As confirmation, ACTN2 enhancer deletion induced heat shock protein 90A expression, a chaperone mediating mTOR activation. Conversely, targeting the ACTN2 enhancer via enhancer CRISPR activation (enCRISPRa) promoted hPSC-CM maturation. Our studies reveal the transcriptional enhancer's role in cardiac maturation and disease, offering insights into potentially fine-tuning gene expression to modulate cardiomyocyte physiology.


Asunto(s)
Actinina , Diferenciación Celular , Elementos de Facilitación Genéticos , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Humanos , Elementos de Facilitación Genéticos/genética , Animales , Actinina/genética , Actinina/metabolismo , Diferenciación Celular/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , Transducción de Señal/genética , Ratones , Transcripción Genética , Regulación del Desarrollo de la Expresión Génica , Línea Celular , Fenotipo
2.
Front Cardiovasc Med ; 10: 1116925, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37283586

RESUMEN

Cardiomyopathies remain one of the leading causes of morbidity and mortality worldwide. Environmental risk factors and genetic predisposition account for most cardiomyopathy cases. As with all complex diseases, there are significant challenges in the interpretation of the molecular mechanisms underlying cardiomyopathy-associated genetic variants. Given the technical improvements and reduced costs of DNA sequence technologies, an increasing number of patients are now undergoing genetic testing, resulting in a continuously expanding list of novel mutations. However, many patients carry noncoding genetic variants, and although emerging evidence supports their contribution to cardiac disease, their role in cardiomyopathies remains largely understudied. In this review, we summarize published studies reporting on the association of different types of noncoding variants with various types of cardiomyopathies. We focus on variants within transcriptional enhancers, promoters, intronic sites, and untranslated regions that are likely associated with cardiac disease. Given the broad nature of this topic, we provide an overview of studies that are relatively recent and have sufficient evidence to support a significant degree of causality. We believe that more research with additional validation of noncoding genetic variants will provide further mechanistic insights on the development of cardiac disease, and noncoding variants will be increasingly incorporated in future genetic screening tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...